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Abstract. A geometrical setting in terms of jet manifolds is developed for time-dependent
non-holonomic Lagrangian systems. An almost product structure on the evolution space is
constructed in such a way that the constrained dynamics is obtained by projection of the free
dynamics. A constrained Poincaré–Cartan 2-form is defined. If the non-holonomic system is
singular, a constraint algorithm is constructed. Special attention is devoted toČaplygin systems
and a reduction theorem is proved.

1. Introduction

In a recent paper [19] (see also [14, 15, 17, 18]), we have developed a geometrical setting for
non-holonomic time-independent Lagrangian systems, where the constraints are linear on
the velocities. That is, the Lagrangian function isL = L(qA, q̇A) and the typical constraint
functions are of the formφi(qA, q̇A) = (µi)A(q)q̇

A.
The aim of the present paper is to extend that geometrical framework for the case of

Lagrangian systems given by a time-dependent Lagrangian functionL = L(t, qA, q̇A) and
constraint functions which are affine on the velocities, sayφi(t, q

A, q̇A) = (µi)A(t, q)q̇
A +

hi(t, q). It seems almost evident that, in order to globalize the picture, we need to use
affine bundles [5, 8, 16, 21, 22]. In fact, the geometrical setting is as follows. We start with
a fibrationπ : E −→ R and, then, we take the 1-jet prolongationJ 1π , which is, in fact,
an affine bundle overE modelled on the vector bundleVπ . So, the Lagrangian function
is supposed to be defined onJ 1π (the evolution space) and the constraints are obtained as
the evaluation maps of a local cobasis of a distributionD on E. It should be remarked
that a compatibility condition with the fibration has to be assumed onD in order to obtain
independent constraint functions as the theory demands in the classical setting [3, 4, 25].

Our approach leads us to write the constrained motion equations in an intrinsic way,
without explicit mention of Lagrange multipliers. To do this, we liftD to two new
distributions onJ 1π . A regularity condition on the constrained system is assumed to
obtain a solution of the dynamics. The regularity condition is automatically satisfied for
Lagrangian functions which are positive or negative definite, a usual assumption in the
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literature. In the regular case, we define an almost product structure(P,Q) on J 1π along
the constraint submanifold̃D such that the dynamics is just the projection byP of the
solution of the unconstrained system.

One of the main results of this paper is the following. There exists a constrained
Poincaŕe–Cartan 2-formω̃ on D̃ such that the solution of the dynamics is a unique non-
autonomous second-order differential equation living in its kernel. The result could be
interesting for quantization purposes, as we will show in a forthcoming paper. We notice
that the constrained Poincaré–Cartan 2-formω̃ coincides (up to the sign) with the one
obtained by Sarlet, Cantrijn and Saunders [27–29, 31].

If the constrained system is not regular, we construct a constraint algorithm which gives
a final constraint submanifold̃Df of D̃ on where there is a solution of the dynamics. Of
course, the dynamics is no longer unique. The procedure is quite similar to that developed
by Gotay and Nester [9–11] for singular Lagrangians. The constrained submanifolds are
obtained by demanding the preservation of the constraints on the time, as in the Dirac–
Bergmann formalism [7].

The Hamiltonian counterpart is also studied. Nothing special is obtained since both
formalisms are ‘isomorphic’ by means of the Legendre transformation. However, the results
illustrate the differences in comparison with the time-independent case.

A special kind of constrained system is studied at the end of the paper, the so-called
Čaplygin systems. They are constrained systems where the constraints are imposed by
the existence of a connection in some intermediate fibrationE −→ N −→ R. In other
words, the motions have to be horizontal curves. We assume that the Lagrangian function
is invariant by horizontal lifts. This is just the case when we are in presence of principal
fibrations and we demand invariance by the action of the structure group [12]. We obtain a
sort of reduction procedure which remembers the symplectic reduction procedure. In fact,
our procedure gives a reduced free Lagrangian subjected to a non-conservative force in such
a way that the original dynamics are obtained by horizontal lift of the reduced one. We can
say that for non-holonomic systems the invariance by connections plays the same role that
the invariance by symmetries does for unconstrained systems. This reduction procedure
permits us to relate the constants of motion for the reduced system with the ones for the
original constrained system.

2. Evolution spaces

Let E be an (n + 1)-dimensional fibred manifold overR, i.e., there exists a surjective
submersion

π : E −→ R.

We denote byJ 1π the 1-jet manifold of local sections ofπ , namely

J 1π =
{
j1
t φ/φ : U ⊂ R −→ E,π ◦ φ = idU
U open neighbourhood oft

}
.

If (t, qA) are fibred coordinates onE, thenJ 1π has local coordinates(t, qA, vA). In fact,
if φ(s) = (s, φA(s)), s ∈ U , thenj1

t φ has coordinates(
t, φA(t),

dφA

ds
(t)

)
.

Therefore, ifE has dimension(n + 1), J 1π has dimension(2n + 1) and it is a fibred
manifold overE andR with canonical projectionsπ1,0 : J 1π −→ E andπ1 : J 1π −→ R,
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respectively. In local coordinates, we have

π1,0(t, q
A, vA) = (t, qA) π1(t, q

A, vA) = t π(t, qA) = t.

Jet manifoldsJ 1π will be evolution spaces for time-dependent mechanics.
We define a canonical embeddingι : J 1π −→ T E as follows:

ι(j1
t φ) = φ̇(t)

whereφ̇(t) ∈ Tφ(t)E is the tangent vector att of the curveφ(s). If we take local coordinates
(t, qA, τ, τA), we have

ι(t, qA, vA) = (t, qA, 1, vA).

3. The vertical endomorphism

There exists a canonical endomorphismJ̃ of T J 1π , i.e. a tensor field of type(1, 1) on J 1π ,
defined as follows [30]. Let bẽX ∈ Tj1

t φ
(J 1π), and take its projections toE andR:

T π1,0(X̃) ∈ Tφ(t)E T π1(X̃) ∈ TtR.
Therefore, we haveT π1,0(X̃)−T φ(T π1(X̃))∈(V π)φ(t), whereVπ is the vertical subbundle
of T E consisting ofπ -vertical tangent vectors onE. Now, we put

J̃ (X̃) = (T π1,0(X̃)− T φ(T π1(X̃)))
v
/J 1π

where thev means the vertical lift of a tangent vector atE to T E.
In local coordinates we obtain

J̃

(
∂

∂t

)
= −vA ∂

∂vA
J̃

(
∂

∂qA

)
= ∂

∂vA
J̃

(
∂

∂vA

)
= 0

or, equivalently,

J̃ = (dqA − vAdt)⊗ ∂

∂vA
.

If we denote byθA = dqA − vA dt the set of local contact forms onJ 1π , we obtain the
more familiar expression

J̃ = θA ⊗ ∂

∂vA
.

4. Second-order differential equations

The manifoldJ 2π of 2-jets of local sections is defined in a similar way:

J 2π =
{
j2
t φ/φ : U ⊂ R −→ E,π ◦ φ = idU
U open neighbourhood oft

}
.

We take local coordinates(t, qA, vA, aA) on J 2π . J 2π is a fibred manifold overJ 1π , E
andR with canonical projections

π2,1 : J 2π −→ J 1π π2,0 : J 2π −→ E π2 : J 2π −→ R

locally given by

π2,1(t, q
A, vA, aA) = (t, qA, vA) π2,0(t, q

A, vA, aA) = (t, qA)

π2(t, q
A, vA, aA) = t.
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There exists a natural inclusion ofJ 2π into the 1-jet manifoldJ 1π1. In fact, define

j : J 2π ↪→ J 1π1

j2
t φ 7−→ j1

t ψ

whereψ(s) = j1
s φ. In local coordinates we obtain

j (t, qA, vA, aA) = (t, qA, vA, vA, aA).

Moreover, there exists a natural embedding ofJ 1π1 into T J 1π . So, we have the following
chain of embeddings:

J 2π
j
↪→ J 1π1

u
↪→ T J 1π.

We will consider a special class of vector fields onJ 1π .

Definition 4.1. We say that a vector fieldξ on J 1π is a non-autonomous second-order
differential equation (NSODE for simplicity) ifξ : J 1π −→ T J 1π takes values into
(u ◦ j)(J 2π).

Therefore,ξ is a NSODE iff it has the following local expression,

ξ(t, qA, vA) = ∂

∂t
+ vA

∂

∂qA
+ ξA

∂

∂vA

whereξA = ξA(t, qA, vA).
If we put η = (π1)

∗(dt), we obtain the following geometrical characterization of a
NSODE.

Proposition 4.2. ξ is a NSODE iff J̃ (ξ) = 0 andη(ξ) = 1.

Notice that a local sectionφ of π : E −→ R may be viewed as a curve inE.

Definition 4.3. A local sectionφ of π : E −→ R is a solution of a NSODEξ if the 1-jet
prolongationj1φ of φ to J 1π is an integral curve ofξ .

Thus, φ(t) = (t, φA(t)) is a solution ofξ iff it satisfies the following system of non-
autonomous differential equations of second order:

d2φA

dt2
= ξA

(
t, φB,

dφB

dt

)
dφA

dt
= vA.

It should be remarked that an integral curveσ of a NSODE ξ is necessarily a 1-jet
prolongation, sayσ = j1φ, whereφ is a solution ofξ .

Remark 4.4. If E is the trivial fibrationprR : E = R × Q −→ R, we have canonical
identifications

J 1prR = R × TQ J 2prR = R × T 2Q J 1(prR)1 = R × T (TQ)

whereT 2Q is the tangent bundle of order 2 ofQ.
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5. Lagrangian mechanics in jet manifolds

Let L : J 1π −→ R be a non-autonomous or time-dependent Lagrangian function. Define
the Poincaŕe–Cartan forms associated toL by

2L = Lη + J̃ ∗(dL) (Poincaŕe–Cartan 1-form)

�L = −d2L (Poincaŕe–Cartan 2-form).

Denote byp̃A = ∂L/∂vA the generalized momenta. Then we have

2L = (L− vAp̃A) dt + p̃A dqA.

Of course, we also have

2L = L dt + p̃Aθ
A.

We say thatL is regular if and only if the Hessian matrix(
∂2L

∂vA∂vB

)
is non-singular. So,L is regular iff(�L, η) is a cosymplectic structure onJ 1π . This means
that�L andη are closed and�nL ∧ η is a volume form (see [6, 13, 20]). In this case, there
exists a unique vector fieldξL on J 1π such that

iξL�L = 0 iξLη = 1. (1)

In other words, ifbL : T J 1π −→ T ∗J 1π is the vector bundle isomorphism defined by
bL(X) = iX�L + η(X)η, we haveξL = b−1

L (η). ξL is the Reeb vector field of the
cosymplectic structure(�L, η), and it will be called the Euler–Lagrange vector field.

Suppose thatξL is locally given by

ξL = ∂

∂t
+XA

∂

∂qA
+ ξA

∂

∂vA
.

A direct computation from (1) gives

vAXB
∂p̃A

∂qB
−XB

∂L

∂qB
+XB

∂p̃B

∂t
+ ξBvA

∂p̃A

∂vB
= 0 (2)

−∂p̃A
∂t

− vB
∂p̃B

∂qA
+ ∂L

∂qA
+XB

∂p̃B

∂qA
−XB

∂p̃A

∂qB
− ξB

∂p̃A

∂vB
= 0 (3)

(XB − vB)
∂p̃B

∂vA
= 0. (4)

From (4) and sinceL is regular, we deduce thatXA = vA. Thus, (2) and (3) become

vA
[
∂p̃A

∂t
+ vB

∂p̃A

∂qB
+ ξB

∂p̃A

∂vB
− ∂L

∂qA

]
= 0 (5)

∂p̃A

∂t
+ vB

∂p̃A

∂qB
+ ξB

∂p̃A

∂vB
− ∂L

∂qA
= 0. (6)

Therefore, we have the following.

Theorem 5.1. (i) ξL is a NSODE.
(ii) The solutions ofξL are just the solutions of the Euler–Lagrange equations forL

d

dt

(
∂L

∂vA

)
− ∂L

∂qA
= 0 vA = dqA

dt
. (7)
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6. Non-holonomic Lagrangian mechanics. Motion equations

Suppose thatL : J 1π −→ R is a regular Lagrangian subjected to a set of non-holonomic
constraints given by am-codimensional distributionD on E. This means that the only
allowable evolutionsj1

t φ have to belong toD. More precisely, the tangent vectors
φ̇(t) ∈ Tφ(t)E have to be inDφ(t). It should be noted that a compatibility condition onD has
to be assumed. In fact, ifD0 is the annihilator ofD, we will assume thatπ∗(dt)x /∈ (D0)x ,
or, equivalently,D0 ∧ π∗(dt) 6= 0. Remark that ifπ∗(dt) ∈ D0, thenD ∩ J 1π = ∅ which
implies the incompatibility of the constrained system.

Let µi be a local basis ofD0, i.e.

D0 = 〈µi / 1 6 i 6 m〉.
We define two distributionsDv andDc on J 1π as follows. Letµc

i be the complete lift of
µi to T E. Let us recall that ifµi = (µi)A dqA + hi dt , then

µc
i = (µi)

c
A dqA + (µi)

v
A dτA + hc

idt + hidτ

=
(
τ
∂(µi)A

∂t
+ τB

∂(µi)A

∂qB

)
dqA + (µi)A dτA +

(
τ
∂hi

∂t
+ τB

∂hi

∂qB

)
dt + hi dτ.

Hereµv
i denotes the vertical lift ofµi to T E, i.e. the pull-back ofµi by the canonical

projectionτE : T E −→ E. Hence, its restriction toJ 1π is given by

µc
i /J 1π

=
(
∂(µi)A

∂t
+ vB

∂(µi)A

∂qB

)
dqA + (µi)A dvA +

(
∂hi

∂t
+ vB

∂hi

∂qB

)
dt.

We put µ̄i = J̃ ∗(µc
i /J 1π

). Thus, we get

µ̄i = (µi)A dqA − vA(µi)A dt

= (µi)Aθ
A.

Now, we defineDv andDc by prescribing that their annihilators are locally generated by
{µ̄i} and{µ̄i , µc

i /J 1π
}, i.e.

(Dv)0 = 〈µ̄i〉 (Dc)0 = 〈µ̄i , µc
i /J 1π

〉.
First of all, note that{µ̄i , µc

i /J 1π
} are linearly independent at every point ofJ 1π . This

follows taking into account that, from the assumption onD, the local 1-forms{(µi)A dqA}
are linearly independent. Secondly,(Dv)0 and(Dc)0 are well defined along̃D = D ∩ J 1π .
In fact, let {µ′

i} be another local basis ofD0. Thus, we have

µ′
i = 3

j

i µj

where (3j

i ) is a non-singular matrix at every point in the overlapping of the two
neighbourhoods whereµi and µ′

i are defined. The following formulae are obtained by
a direct computation

(µ′
i )

c
/J 1π

= ((3
j

i )
c ◦ ι)π∗

1,0(µj )+3
j

i µ
c
j /J 1π

µ̄′
i = 3

j

i µ̄j .
(8)

From (8) it is easy to prove thatDv andDc are well defined along̃D = D ∩ J 1π .
Now, the constrained motion equations can be written as follows

iX�L ∈ (Dv)0 iXη = 1 X ∈ Dc (9)

along the points ofD̃.
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In fact, (9) can be equivalently written as

iX�L = λiµ̄i iX dt = 1 µc
i /J 1π

(X) = 0 µ̄i(X) = 0 (10)

whereλi are some Lagrange multipliers to be determined [25].
Note that the first two equations in (9) imply that any solutionX has to be a NSODE,

and, then, the third equation in (9) becomes(
∂hi

∂t
+ vB

∂hi

∂qB

)
+ vA

(
∂(µi)A

∂t
+ vB

∂(µi)A

∂qB

)
+ (µi)AX(v

A) = 0. (11)

Now, letφi = (µ̂i)/J 1π be the restriction of the function̂µi to J 1π . Let us recall that given
a 1-formµ on a manifoldN , we define an evaluation function̂µ onTN by µ̂(X) = 〈µ,X〉.
Sinceµ̂i(t, qA, τ, τA) = (µi)Aτ

A + hiτ , we deduce that

φi(t, q
A, vA) = (µi)Av

A + hi (12)

which is the usual form of the constraints in the local analysis (see [25]). By comparing
(11) and (12) we deduce that the conditionX ∈ Dc is equivalent to ask thatX has to
be tangent to the submanifold ofJ 1π locally defined by the vanishing of theφi ’s. This
submanifold is justD̃ = D ∩ J 1π , whereD is now considered as a submanifold ofT E.
Note that the functionsφi are independent sinceD0 ∧ π∗(dt) 6= 0.

From (10) we deduce that the solutions ofX satisfy the following system of second-order
differential equations

d

dt

(
∂L

∂vA

)
− ∂L

∂qA
= −λi(µi)A vA = dqA

dt

subjected to the constraintsφi(t, qA, vA) = 0.

Remark 6.1. Notice that equations (9) are restricted to the submanifoldD̃, since
µ̄i(X) = φi=0.

7. Solving the motion equations

In this section we shall give a procedure to solve equations (9) by using a very geometrical
method. First of all, we give the following definition.

Let S be the distribution onJ 1π obtained from(Dv)0 by means of the isomorphism
bL : T (J 1π) −→ T ∗(J 1π), namely

S(x) = bL(x)
−1
(
(Dv)0x

) ∀x ∈ D̃.
In fact, S is a distribution along the points of̃D. If we put

iZi�L + η(Zi)η = µ̄i

thenS is locally generated by theZi ’s. Notice thatZi is completely characterized by the
conditions

iZi�L = µ̄i iZi η = 0.

Thus,Zi is aπ1,0-vertical vector field alongD̃.

Definition 7.1. The constrained system is said to be regular if

Sx ∩ TxD̃ = 0 ∀x ∈ D̃.
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Now, let us explain the meaning of the regularity condition.
Put Cij = Zi(φj ) and take the matrixC = (Cij ). Then, we have

Proposition 7.2. The constrained system is regular iff the matricesC = (Cij ) are non-
singular.

Proof. Suppose that the constrained system is regular. Take an arbitrary linear
combination of columns ofC at some pointx such that

m∑
i=1

λiZi(x)(φj ) = 0.

Thus,
∑
λiZi(x) ∈ TxD̃ which implies that

∑
λiZi(x) = 0, and henceλ1 = λ2 = · · · =

λm = 0.
Conversely, supposeC be non-singular and let beX ∈ Sx ∩TxD̃. Thus,X = ∑

λiZi(x)

andX(φj ) = 0, ∀j, 1 6 j 6 m which implies that
∑
λiZi(φj ) = 0. Therefore, we deduce

that λ1 = · · · = λm = 0, and consequentlyX = 0. �

Proposition 7.3. If the Hessian matrix(
∂2L

∂vA∂vB

)
is positive or negative definite at each pointx ∈ D̃, then the constrained system is regular.

Proof. The result follows since

Cij = −WAB(µi)A(µj )B

where(WAB) denotes the inverse matrix of the Hessian matrix(∂2L/∂vA∂vB). �

Remark 7.4. The last proposition clarifies the usual assumption on the positive or negative
character of the Hessian matrix ofL. It is nothing but a sufficient condition to ensure the
regularity of the constrained system. For instance, letg be a Riemannian metric on the
vertical bundleVπ such thatg = gAB(t, q)dqA dqB . As we know,π1,0 : J 1π −→ E

is an affine bundle modelled on the vertical vector bundleVπ −→ E. The choice of a
global sections of π1,0 (which is equivalent to the choice of a connection in the fibration
π : E −→ R [30]) leads us to define an associated kinetic energy byL(t, qA, vA) =
gABv

AvB + 2gABvAsB + gABs
AsB , where s(t, qA) = (t, qA, sA(t, q)). Therefore, the

Hessian matrix becomes(∂2L/∂vA∂vB = gAB). In case ofE be the trivial fibration
prR : E = R×Q −→ R, we can take the standard connection such thats(t, qA) = (t, qA, 0).
Thus, the associated Lagrangian function is justL(t, qA, vA) = gABv

AvB .

Since dimD̃ = 2n+ 1 −m and dimS(x) = m, ∀x ∈ D̃, we conclude the following.

Proposition 7.5. If the constrained system is regular, we have

Tx(J
1π) = Sx ⊕ TxD̃ ∀x ∈ D̃. (13)
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Moreover, we can realize this splitting as follows. Define a linear map

Qx : Tx(J
1π) −→ Tx(J

1π)

for everyx ∈ D̃, by putting

Qx = Cij (x)Zj (x)⊗ dφi(x).

A direct computation shows thatQ2
x = Qx and Qx(X) ∈ S(x), for all x ∈ D̃ and for all

X ∈ Tx(J 1π). Thus,

X = Qx(X)+ (X − Qx(X))

is the splitting given in (13).
The above splitting is intrinsic. Nevertheless, in order to clarify our procedure, we shall

study the behaviour ofQ by a change of local basis. Take another local basis{µ′
i} of D0

such that

µ′
i = 3

j

i µj .

Hence, we obtain

(µ′
i )A = 3

j

i (µj )A h′
i = 3

j

i hj

whereµ′
i = (µ′

i )A dqA + h′
i dt . Therefore, the new constraint functions definingD̃ are

φ′
i = 3

j

i φj . (14)

On the other hand, we get

Z′
i = 3

j

i Zj (15)

where{Z′
i} is the new local basis ofS. From (14) and (15) we have

C ′
ij = Z′

i (φ
′
j ) = 3r

i Zr(3
s
jφs)

= 3r
i3

s
jZr(φs)+3r

i φsZr(3
s
j )

= Crs3r
i3

s
j

along the points ofD̃. Thus,

(C ′)ij = Crs(3−1)ir (3
−1)js

alongD̃. This implies

Q′ = (C ′)ijZ′
j ⊗ dφ′

i

= Crs(3−1)ir (3
−1)js3

a
j Za ⊗ d(3b

i φb)

= Q + Cra(3−1)irφbZa ⊗ d3b
i

= Q
alongD̃. Therefore,Q is well defined alongD̃ and it is a tensor field of type(1, 1) on J 1π

alongD̃. SinceQ2 = Q, we have obtained an almost product structure onJ 1π alongD̃.
If P = id − Q, thenP(ξL)(x) ∈ TxD̃, ∀x ∈ D̃. Thus,P(ξL/D̃) is tangent toD̃, say

P(ξL/D̃) ∈ X(D̃). Moreover,

P(ξL/D̃) = ξL/D̃ − Q(ξL/D̃)
= ξL/D̃ − Cij ξL/D̃(φi)Zj

which implies thatP(ξL/D̃) is a solution of (9). So, we have proved the following.
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Proposition 7.6. If the constrained system is regular, there exists an almost product
structure(P,Q) along the constraint submanifold̃D = D ∩ J 1π such thatP(ξL/D̃) is

tangent toD̃, and is a solution of the constrained dynamics.

Remark 7.7. Since(�L, η) is cosymplectic,P(ξL/D̃) is in fact the only solution of the
constrained motion equations.

From the regularity of the local matricesC we deduce that(P,Q) may be extended (in
many ways) to an open neighbourhood ofD̃. Therefore,ξ may also be extended to an open
neighbourhood ofD̃. This fact will be used in the following lemmas.

Lemma 7.8. Given a regular constrained system(L,D), the vector fieldξ solving the
constrained dynamics satisfies

Lξ2L = dL− LQ(ξL)2L

along the points ofD̃, whereL denotes the Lie derivative.

Proof. It follows sinceξ = P(ξL) = ξL − Q(ξL) andLξL2L = dL. �

Lemma 7.9. Under the same hypothesis as in lemma 7.8, we have

LQ(ξL)2L ∈ (Dv)0.

Proof. SinceQ(ξL) = ∑m
j=13

jZj , with 3j = Cij ξL(φi), we deduce that

LQ(ξL)2L = L∑m
j=13

jZj2L

= i∑m
j=13

jZj d2L + d(i∑m
j=13

jZj2L)

= −i∑m
j=13

jZj�L = −
m∑
j=1

3jµ̄j

since the vector fieldsZj areπ1,0-vertical and2L is semibasic. �

8. The constrained Poincaŕe–Cartan 2-form

Let L : J 1π −→ R be a regular constrained system subjected to a set of non-holonomic
constraints given by am-codimensional distributionD on E. For every pointx ∈ D̃ =
D ∩ J 1π , define

ω(x) = �L(x)− (iQ(ξL)(x)�L(x)) ∧ η(x).
Henceω is a 2-form onJ 1π alongD̃. We also have thatη(x) ∧ ωn(x) 6= 0 for all x ∈ D̃.
Thus, there exists a unique vector fieldX on J 1π alongD̃ such that

iXω = 0 iXη = 1. (16)

In fact, a direct computation proves thatX = P(ξL/D̃).
Next, we get the following.

Theorem 8.1. If ω̃ and η̃ are the restrictions ofω andη to the constrained submanifold
D̃ = D∩ J 1π then the solutionP(ξL/D̃) of the constrained dynamics verifies the equations

iXω̃ = 0 iXη̃ = 1. (17)

Moreover, the unique NSODEX on D̃ satisfying (17) is justP(ξL/D̃).
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Proof. Since the vector fieldP(ξL/D̃) satisfies (16), then it also verifies (17).

Now, let X be a NSODE onD̃ (that is, J̃X = 0) such thatiXω̃ = 0 and iXη̃ = 1.
Then, we have that

(iXω)(P(Y )) = 0 (18)

for all vector fieldsY on J 1π alongD̃.
On the other hand, ifZ is a vector field onJ 1π alongD̃, using thatQ(Z) is π1,0-vertical

and the fact thatX is a NSODE, we obtain

(iXω)(Q(Z)) = −(iQ(Z)�L)(X)− (iQ(ξL)�L)(X)η(Q(Z))+ (iQ(ξL)�L)(Q(Z)) = 0. (19)

Finally, from (18) and (19), we conclude thatiXω = 0 which implies thatX = P(ξL/D̃).
�

Definition 8.2. The 2-formω̃ is said to be the constrained Poincaré–Cartan 2-form.

Remark 8.3. (i) The 2-form ω̃ coincides (up to the sign) with the one obtained by
Saunderset al (see [31]). It should be remarked that our result holds for arbitrary regular
non-holonomic Lagrangian systems, without any assumption on the positive or negative
definiteness ofL.

(ii) Note that(ω̃, η̃) is no longer cosymplectic so that it may be another solution of the
equations

iXω̃ = 0 iXη̃ = 1.

Example 8.4. (The curve of pursuit.)Suppose that a pointA moves on the axisOx, the
distanceOA being a prescribed functionf (t) of t . The particle of massm, whose position
at time t is (x, y), moves in thexy-plane, and is constrained so that at each instant its
velocity is directed towardsA. This curve is calledcurve of pursuit(see [24]).

Consider the trivial bundleπ : R × R2 −→ R, π(t, x, y) = t and the jet bundle
J 1π with coordinates(t, x, y, ẋ, ẏ). We can describe this system by the Lagrangian
L : J 1π −→ R

L = 1
2m(ẋ

2 + ẏ2)

and the distributionD globally annihilated by the 1-form

µ = y dx + (f (t)− x) dy.

A direct computation shows that

2L = − 1
2m(ẋ

2 + ẏ2) dt +mẋ dx +mẏ dy

�L = mẋ dẋ ∧ dt +mẏ dẏ ∧ dt +m dx ∧ dẋ +m dy ∧ dẏ

ξL = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
.

Therefore, the distributionDv is defined by prescribing its annihilator be generated by the
global 1-form

µ̄ = y dx + (f (t)− x) dy − ẋy dt − ẏ(f (t)− x) dt.

Hence, the distributionS is generated by the vector field

Z = − y

m

∂

∂ẋ
− (f (t)− x)

m

∂

∂ẏ
.
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Since Sx ∩ TxD̃ = 0 for all x ∈ D̃, we deduce that the constrained system is regular.
Notice thatL is the kinetic energy associated with the Riemannian metricg on R2 given
by g = m(dx2 + dy2) (see proposition 7.3 and remark 7.4).

From the decompositionTxJ 1π = Sx ⊕ TxD̃, we get the complementary projectors

Q = C−1Z ⊗ dφ = 1

y2 + (f (t)− x)2

(
y
∂

∂ẋ
+ (f (t)− x)

∂

∂ẏ

)
⊗(ẋ dy + y dẋ + ∂f

∂t
ẏ dt − ẏ dx + (f (t)− x) dẏ)

P = id − Q
where

C = − 1

m
(y2 + (f (t)− x)2) φ = yẋ + (f (t)− x)ẏ.

The solution of the constrained dynamics is the vector field

ξ = P(ξL/D̃) = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
− yẏ

y2 + (f (t)− x)2

(
∂f

∂t

)
∂

∂ẋ

− (f (t)− x)ẏ

y2 + (f (t)− x)2

(
∂f

∂t

)
∂

∂ẏ
.

So, the solutions of the constrained motion equations are the solutions of the following
system of non-autonomous second-order differential equations:

ẍ = − yẏ

y2 + (f (t)− x)2

∂f

∂t
ÿ = − (f (t)− x)ẏ

y2 + (f (t)− x)2

∂f

∂t

Finally, the constrained Poincaré–Cartan 2-formω̃ is the restriction to the constraint
submanifoldD̃ of the 2-form

ω = mẋ dẋ ∧ dt +mẏ dẏ ∧ dt +m dx ∧ dẋ +m dy ∧ dẏ

+ mẏ

y2 + (f (t)− x)2

∂f

∂t
(y dx ∧ dt + (f (t)− x) dy ∧ dt).

Example 8.5. (An specialČaplygin sleigh[23], (p 94), [26, 31].) Let us consider the free
motion of a solid body on a horizontal plane in the case when the projection of the centre
of mass coincides with the point of contact of a sharp wheel and the plane.

Consider the trivial bundleπ : R × R2 × S1 −→ R, π(t, x, y, φ) = t and the jet
bundleJ 1π with coordinates(t, x, y, φ, ẋ, ẏ, φ̇). We can describe this system by the regular
Lagrangian functionL : J 1π −→ R,

L = 1
2(ẋ

2 + ẏ2 + φ̇2),

and the distributionD globally annihilated by the 1-form

µ = cosφ dy − sinφ dx.

So, the constraints are given byψ(t, x, y, φ, ẋ, ẏ, φ̇) = (cosφ)ẏ−(sinφ)ẋ = 0. In an open
set where tanφ is defined, the constraints are given byẏ = ẋ tanφ.

A direct computation shows that

2L = ẋ dx + ẏ dy + φ̇ dφ − 1
2(ẋ

2 + ẏ2 + φ̇2) dt

�L = dx ∧ dẋ + dy ∧ dẏ + dφ ∧ dφ̇ − dt ∧ (ẋ dẋ + ẏ dẏ + φ̇ dφ̇)

ξL = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
.
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Because

µ̄ = cosφ dy − sinφ dx + (ẋ sinφ − ẏ cosφ) dt

the distributionS is generated by the vector field

Z = sinφ
∂

∂ẋ
− cosφ

∂

∂ẏ
.

SinceSx ∩ TxD̃ = 0 for all x ∈ D̃, we deduce that the constrained system is regular. In
fact, L is the kinetic energy associated with the Riemannian metricg = dx2 + dy2 + dφ2

on R2 × S1 (see proposition 7.3 and remark 7.4).
The matrixC is just a real function, sayC = Z(ψ) = −1, and we get complementary

projectors

Q = −Z ⊗ dψ P = id + Z ⊗ dψ.

Finally, the solution of the constrained dynamics is the vector field

ξ = P((ξL)/D̃) =
(
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
− ẏφ̇

∂

∂ẋ
+ ẋφ̇

∂

∂ẏ

)
/D̃

.

However, along an open setU of D̃ for which cosφ 6= 0, we can choose local coordinates
(t, x, y, φ, ẋ, φ̇) so thatξ becomes

ξ = ∂

∂t
+ ẋ

∂

∂x
+ (ẋ tanφ)

∂

∂y
+ φ̇

∂

∂φ
− (ẋφ̇ tanφ)

∂

∂ẋ
.

Again by a straightforward computation we deduce that the constrained Poincaré–Cartan
2-form is given by

ω = dx ∧ dẋ + dy ∧ dẏ + dφ ∧ dφ̇ − dt ∧ (ẋ dẋ + ẏ dẏ + φ̇ dφ̇ − ẏφ̇ dx + ẋφ̇ dy).

Thus, its restriction toU becomes

ω̃ = −((d2L)/U − ẋφ̇ dt ∧ (dy − tanφ dx))

which is (up to the sign) the 2-form obtained in [31].

9. The singular case

Suppose now that the constrained system is not regular, that is, we haveSx ∩ TxD̃ 6= 0, for
somex ∈ D̃. From proposition 7.2, this fact is equivalent to the non-regularity of the local
matricesC = (Cij ).

We consider the distributionSL on J 1π along the points ofD̃ given by

(SL)x = Sx ⊕ 〈ξL(x)〉
for all pointsx ∈ D̃.

We have

Sx ∩ TxD̃ ⊂ (SL)x ∩ TxD̃
for any pointx ∈ D̃.

In section 7, we have constructed an almost product structure(P,Q) on J 1π alongD̃
so that the unique solutionξ of the dynamics is just the projection byP of the Euler–
Lagrange vector fieldξL, that is, ξ = P((ξL)/D̃). In the regular case, we have that

dim(SL)x ∩ TxD̃ = 1, and a generator of this vector space is preciselyξ(x).
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Now, consider the following subset iñD:

D̃2 = {x ∈ D̃/Sx ∩ TxD̃ ( (SL)x ∩ TxD̃}
which is supposed to be a submanifold. At the points inD̃2 there exists at least a tangent
vectorX = ξL(x) + λiZi(x), for some real numbersλi ∈ R, such that it belongs toTxD̃.
However,X is not necessarily tangent tõD2, and, therefore, we are compelled to define
the submanifoldD̃3 of D̃2 as follows:

D̃3 = {x ∈ D̃2/Sx ∩ TxD̃2 ( (SL)x ∩ TxD̃2}.
Proceeding further, we obtain the following sequence of constraint submanifolds

· · · → D̃k → · · · D̃3 → D̃2 → D̃1 = D̃

where, for anyk > 1 we have

D̃k = {x ∈ D̃k−1/Sx ∩ TxD̃k−1 ( (SL)x ∩ TxD̃k−1}.
In the following, we will suppose that this algorithm stabilizes, that is, there exists an integer
k > 1 such thatD̃k+1 = D̃k and dimD̃k > 0. We denote byD̃f = D̃k the final constraint
submanifold, and then there exists at least a vector fieldξ on D̃f satisfying

(iξ�L ∈ (Dv)0)/D̃f (iξ η = 1)/D̃f . (20)

Along the points ofD̃f we have the following strict inclusion

Sx ∩ TxD̃f ( (SL)x ∩ TxD̃f
for any pointx ∈ D̃f .

Then, there exist vector fieldsX on D̃f such thatX(x) ∈ (SL)x ∩ TxD̃f but X(x) /∈
Sx ∩ TxD̃f . Therefore, we can select a vector fieldY on D̃f such thatY = (ξL + λiZi)/D̃f

for some suitable values of the Lagrange multipliersλi on D̃f . In particular we have shown
that ξL(x) ∈ Sx + TxD̃f .

As in the regular case, it is possible to construct almost product structures along the
points of D̃f such that the projection of the Euler–Lagrange vector fieldξL gives us a
solution of the constrained dynamics.

First of all, we will assume that the subspaceSx ∩ TxD̃f has constant dimensionr for
any pointx ∈ D̃f . Now, we splitSx as direct sum of two complementary subspaces, say

Sx = Šx ⊕ (Sx ∩ TxD̃f ).
It is clear that dimŠx = m− r, and this splitting is not unique.

Next, using thatTxD̃f ∩ Šx = {0}, we split the whole tangent spaceTx(J 1π):

Tx(J
1π) = Šx ⊕ TxD̃f ⊕Mx, x ∈ D̃f

whereMx is a suitable complementary subspace.
There exist three projectors associated with the above splitting:

Qx : Tx(J
1π) −→ Šx

(P1)x : Tx(J
1π) −→ TxD̃f

(P2)x : Tx(J
1π) −→ Mx.

Define the projectorPx = (P1)x + (P2)x . Since ξL(x) ∈ Sx + TxD̃f , we deduce that
Px(ξL(x)) = (P1)x(ξL(x)), and along the points of̃Df we have that

iPx (ξL(x))�L(x) = i(ξL(x)−Qx (ξL(x)))�L(x)

= −iQx (ξL(x))�L(x) ∈ (Dv)0x
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and

iPx (ξL(x))η(x) = i(ξL(x)−Qx (ξL(x)))η(x)

= iξL(x)η(x) = 1.

Moreover,Px(ξL(x)) ∈ TxD̃f . We deduce thatP(ξL/D̃f ) is a solution of the constrained
dynamics and there exists an ambiguity of the solution of the dynamics because any vector
field of the formP(ξL/D̃f )+X, with X ∈ S ∩ T D̃f is a solution of the dynamics, too.

We have chosen complementary distributionsŠ andM in order to obtain the dynamics.
Note that it is possible to realize both decompositions, sayS = Š ⊕ (T D̃f ∩ S) and
T (J 1π) = Š ⊕ T D̃f ⊕ M along D̃f . In fact suppose that̃Df is locally defined by the
vanishing of the functions9i , i = 1, . . . , p, and take a local basis{µi} of D0. Denote by
Zi the correspondingπ1,0-vertical vector fields along̃D and byCf the matrix with entries
(Cf )ij = Zi(9j ). We consider the linear map

9x : Sx −→ Rp , u ∈ Sx 7−→ (u(91), . . . , u(9p))

for a point x ∈ D̃f . It is evident that ker9x = Sx ∩ TxD̃f . Furthermore, the associated
matrix with9x with respect to the basis{Z1(x), . . . , Zm(x)} and the canonical basis ofRp

is precisely(Cf )x .
We have assumed thatT D̃f ∩ S has constant rankr. Thus, the matrixCf has constant

rankm− r. Suppose that the matrixC ′
f = ((Cf )i ′j ′), 1 6 i ′, j ′ 6 m− r, is regular. In such

a case, we define a projectorQ by

Q = (C ′
f )
i ′j ′
Zj ′ ⊗ d9i ′

where((C ′
f )
i ′j ′
) is the inverse matrix ofC ′

f . Note thatŠ = 〈Zi ′ / 1 6 i ′ 6 m− r〉. If we put

P = id − Q we obtain an almost product structure(P,Q) along D̃f . The decomposition
P = P1 + P2 is obtained by choosing a complementaryM of Š ⊕ TDf . This choice
corresponds to the ambiguity in the determination of the remainder Lagrange multipliers.
Indeed, if we computeP(ξL/D̃f ) we obtain

P(ξL/D̃f ) =
(
ξL − (C ′

f )
i ′j ′
ξL(9i ′)Zj ′

)
/D̃f

and a general solution is of the form

P(ξL/D̃f )+ Y

whereY ∈ T D̃f ∩S. So, the only Lagrange multipliers determined are just the components
of Zj ′ ’s.

10. The Hamiltonian formalism

Let L : J 1π → R be a regular time-dependent Lagrangian function. We define the map
Leg : J 1π → T ∗E by

Leg(j1
t φ)(X) = (2L)(j1

t φ)
(X̃)

for j1
t φ∈J 1π andX∈Tφ(t)E, whereX̃ is a tangent vector atj1

t φ such that(T π1,0)(X̃) = X.
In local coordinates we obtain:

Leg(t, qA, vA) = (t, qA, L− vAp̃A, p̃A). (21)
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Now, if x is a point ofE we consider the subspace(T ∗
v E)x of T ∗

x E given by

(T ∗
v E)x = {α ∈ T ∗

x E / iuα = 0, ∀u ∈ (V π)x}.
Then, the spaceT ∗

v E = ⋃
x∈E(T

∗
v E)x is a vector subbundle ofπE : T ∗E → E of rank 1.

We will denote byJ 1π∗ the quotient bundleJ 1π∗ = T ∗E/T ∗
v E. J 1π∗ is a vector bundle

overE of rank n with canonical projectionπ∗
1,0 : J 1π∗ → E. J 1π∗ is also fibred overR

with projectionπ∗
1 = π ◦ π∗

1,0 : J 1π∗ → R.
If (t, qA, pt , pA) are local coordinates onT ∗E then we have local coordinates(t, qA, pt )

on T ∗
v E and(t, qA, pA) on J 1π∗.

Let ν : T ∗E → J 1π∗ be the canonical projection. We denote byleg : J 1π → J 1π∗

the mapleg = ν ◦ Leg. Using (21) and the fact thatL is regular, we deduce thatLeg is
an inmersion and thatleg is a local diffeomorphism. Assume, for the sake of simplicity,
that L is hyper-regular, that is,leg : J 1π → J 1π∗ is a global diffeomorphism. In such
a case, we define a global sectionh : J 1π∗ → T ∗E of the projectionν : T ∗E → J 1π∗

by h = Leg ◦ leg−1 (if L is regular we only have local sections ofν). h will be called a
Hamiltonian.

If ωE is the canonical symplectic form onT ∗E, we consider onJ 1π∗ the 2-form�h
given by�h = h∗ωE . A direct computation proves that:

(i) leg∗�h = �L and leg∗η1 = η, where η1 is the 1-form onJ 1π∗ given by
η1 = (π∗

1 )
∗(dt);

(ii) the pair (�h, η1) is a cosymplectic structure onJ 1π∗;
(iii) if Xh is the Reeb vector field for(�h, η1), i.e. iXh�h = 0, iXhη1 = 1, thenξL and

Xh are leg-related;
(iv) suppose that in local coordinates

h(t, qA, pA) = (t, qA,H(t, qA, pA), pA).

Then, the integral curves ofXh satisfy the Hamilton equations

dqA

dt
= − ∂H

∂pA

dpA
dt

= ∂H

∂qA
.

Now, suppose thatL : J 1π → R is subjected to the non-holonomic constraints given
by the distributionD on E. Sinceleg : J 1π → J 1π∗ is a diffeomorphism, we obtain that
D̄ = leg(D̃) is a submanifold ofJ 1π∗ and we can transport the distributionsDc andDv

from J 1π to J 1π∗. The induced distributions will be denoted bȳDc andD̄v, respectively.
The constrained equations would be

iX̃�h ∈ (D̄v)0 iX̃η1 = 1 X̃ ∈ D̄c (22)

along D̄. We also can transport the distributionS to J 1π∗ and obtain a distribution̄S on
J 1π∗ along D̄. Notice thatS̄ is locally generated by the vector fields̄Z1, . . . , Z̄m, where
Z̄i is theπ∗

1,0-vertical vector field onJ 1π∗ defined by

iZ̄j �h = (leg−1)∗(µ̄j ) iZ̄j η1 = 0

for all j ∈ {1, . . . , m}. Of course,Zi and Z̄i are leg-related.
If the constrained system is regular,S̄x ∩ TxD̄ = {0}, ∀x ∈ D̄. Proceeding as in

the Lagrangian side, we construct an almost product structure(P̄, Q̄) on J 1π∗ along D̄,
which is leg-related with (P,Q). Then, the vectorP̄(Xh/D̄) is the unique solution of
the constrained Hamilton equations (22). Moreover, sinceξL andXh are leg-related we
conclude thatP(ξL/D̃) and P̄(Xh/D̄) are leg-related.
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If the constrained system is singular,TxD̃∩Sx 6= 0 for some pointx of D̃. In this case,
using the diffeomorphismleg : J 1π → J 1π∗ we can transport the distributionSL to J 1π∗

and obtain a distributionS̄L on J 1π∗ along D̄. Furthermore, if we apply the algorithm
developed in section 9 to equations (22), we obtain a sequence of submanifoldsD̄i , where

D̄i = {x ∈ D̄i−1/TxD̄i−1 ∩ S̄x ( TxD̄i−1 ∩ ¯(SL)x} i > 1

andD̄1 = D̄. It is evident thatD̄i = leg(D̃i). Thus, both algorithms are related by means
of the Legendre transformationleg : J 1π → J 1π∗, so that if one of them stabilizes at some
stepk, the other one stabilizes too, and at the same levelk.

Again, one can construct an almost product structure along the final constraint
submanifoldD̄f such that the projection of the vector field(Xh)/D̄f gives the dynamics
for the constrained system.

11. Constraints defined by connections

Assuming thatE is a fibred manifold over a manifoldN which also turns out to be a fibred
manifold overR, we have the following commutative diagram

R

E

N

HHHHHHHj

?

��������

π

ρ

γ

whereπ , ρ andγ are surjective submersions such thatπ = γ ◦ ρ. We also assume that a
connection0 on the fibred manifoldρ : E −→ N is given.

Taking 1-jet prolongations we obtain the following commutative diagram

J 1π

J 1γ

HHHHHHHj

?

?

π1,0

γ1,0

j1ρ

R

E

N

HHHHHHHj

?

��������

π

ρ

γ

where all the arrows again define fibred manifolds. We choose adapted local coordinates
(t, qa, qi) for the fibred manifoldE such that

ρ(t, qa, qi) = (t, qa) π(t, qa, qi) = t γ (t, qa) = t.
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In this section we will consider a Lagrangian functionL : J 1π −→ R subjected to
non-holonomic constraints given by the horizontal distributionH of 0. This means that the
only allowable motions are horizontal curves.

We will construct a suitable basis forH . If we denote byXH the horizontal lift of a
vector fieldX onN to E, we obtain(

∂

∂t

)H
= ∂

∂t
− 0i

∂

∂qi(
∂

∂qa

)H
= ∂

∂qa
− 0ia

∂

∂qi

where0i = 0i(t, qb, qj ) and 0ia = 0ia(t, q
b, qj ) are the Christoffel components of the

connection0.
Thus, we have

H =
〈(
∂

∂t

)H
,

(
∂

∂qa

)H 〉
and {(

∂

∂t

)H
,

(
∂

∂qa

)H
,
∂

∂qi

}
is a local basis of vector fields onJ 1π . A straightforward computation shows that

{η = dt, ηa = dqa, ηi = dqi + 0ia dqa + 0idt}
is the local dual basis and, moreover, we have

H 0 = 〈ηi〉.
So, the constraint functions have the form

vi + 0iav
a + 0i = 0.

Define the curvature of0 as the tensor field of type (1,2) onE given by

R = 1
2[h,h]

whereh is the horizontal projector associated with0, and [h,h] is its Nijenhuis tensor (see
[20]). Thus,

R(h(u1),h(u2)) = v([h(u1),h(u2)]) (23)

R(h(u1),v(u2)) = 0 (24)

R(v(u1),v(u2)) = 0 (25)

for anyu1, u2 ∈ TxE, wherev = id − h is the complementary vertical projector. Since

h

(
∂

∂t

)
= ∂

∂t
− 0i

∂

∂qi

h

(
∂

∂qa

)
= ∂

∂qa
− 0ia

∂

∂qi

h

(
∂

∂qi

)
= 0
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we obtain from (23) that

R

(
h

(
∂

∂t

)
,h

(
∂

∂qa

))
= Ri0a

∂

∂qi
(26)

R

(
h

(
∂

∂qa

)
,h

(
∂

∂qb

))
= Riab

∂

∂qi
(27)

where

Ri0a = −∂0
i
a

∂t
+ ∂0i

∂qa
+ 0j

∂0ia

∂qj
− 0ja

∂0i

∂qj

Riab = −∂0
i
b

∂qa
+ ∂0ia

∂qb
+ 0ja

∂0ib

∂qj
− 0

j

b

∂0ia

∂qj
.

According to section 6, the constrained motion equations can be written as follows,

iX�L ∈ (H v)0 iXη = 1 X ∈ H c (28)

along the points ofH̃ = H ∩ J 1π . Equations (28) can be equivalently written as

iX�L = λiη̄i iX dt = 1 ηc
i /J 1π

(X) = 0 η̄i (X) = 0 (29)

along the points ofH̃ .
Now, we will consider a particular kind of constrained system, those calledČaplygin

systems.

Definition 11.1. A Čaplygin system is a constrained system given by a regular Lagrangian
L on J 1π constrained by the horizontal subspaces of a connection0 in the fibration
ρ : E −→ N , such that

L((uH )x1) = L((uH )x2) (30)

for anyu ∈ TyN , y ∈ N , x1, x2 ∈ E, whereρ(x1) = ρ(x2) = y, andγ ∗(dt)y(u) = 1.

Locally, condition (30) is translated as follows:

L(t, qa, qi, va,−0i − va0ia) = L(t, qa, q̄i , va,−0i − va0ia) ∀qi, q̄i . (31)

Remark 11.2. This class of constrained systems were originally considered byČaplygin
[23], and recently studied by Koiller in the autonomous setting [12] (see also [19]). Here,
we consider the non-autonomous case.

Condition (30) permits us to define a Lagrangian functionL∗ on J 1γ as follows,

L∗(j1
t φ) = L((φ̇(t))H )

for any j1
t φ ∈ J 1γ . In local coordinates, we deduce from (31) that

L∗(t, qa, va) = L(t, qa, qi, va,−0i − va0ia)

which implies by applying the chain rule that

∂L

∂qi
− ∂L

∂vj

(
∂0j

∂qi
+ va

∂0
j
a

∂qi

)
= 0. (32)
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We write down the constrained motion equations:

d

dt

(
∂L

∂va

)
− ∂L

∂qa
= −

m∑
i=1

λi0ia (33)

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
= −λi (34)

wherevA = dqA/dt andλi are some Lagrange multipliers to be determined.
From a straightforward but tedious computation, and taking into account (32), (33) and

(34), we obtain

d

dt

(
∂L∗

∂va

)
− ∂L∗

∂qa
= − ∂L

∂vi

[
vbRiab − Ri0a

]
. (35)

We can define a 1-formαL,0 along the mapj1ρ/H̃ : H̃ → J 1γ as follows,

(αL,0)x̃(U) = −(2L)x̃(X̃) (36)

for x̃ ∈ H̃ andU ∈ Tu(J
1γ ), whereu = j1ρ(x̃) and X̃ ∈ Tx̃(J

1π) is a tangent vector
which projects onto the tangent vectorR((u)Hx , ((T γ1,0)(U))

H
x ), with x = π1,0(x̃). A direct

computation shows that

αL,0 = ∂L

∂vi

[
vbRiab − Ri0a

]
θa.

Next, consider the following equations (along the points ofH̃ ):

iY�L∗ = αL,0 iY γ
∗
1 (dt) = 1. (37)

If L∗ is regular, we deduce that there exists a unique vector fieldξ ∗ along the map
j1ρ/H̃ : H̃ → J 1γ , that is,ξ ∗ : H̃ → T (J 1γ ) andτJ 1γ ◦ ξ ∗ = j1ρ/H̃ , which verifies (37).

Moreover, for each point̃x ∈ H̃ , we have

J̃ (ξ∗(x̃)) = 0

where, here,J̃ denotes the vertical endomorphism onJ 1γ . Thus,ξ ∗ may be viewed as a
NSODE alongj1ρ/H̃ .

The following theorem relates both mechanical systems.

Theorem 11.3. The constraineďCaplygin system(L, 0) is regular if and only ifL∗ is
regular. In this case, the solutionξ of the constraineďCaplygin system is related with the
solutionξ ∗ of (37) by projection:

T (j1ρ/H̃ )(ξ) = ξ ∗

that is, the following diagram is commutative:

������������:

H̃

T H̃

XXXXXXXXXXXXz ?
T (J 1γ )

ξ

T (j1ρ/H̃ )
ξ ∗
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Proof. For a proof of the equivalence between the regularity of the constrainedČaplygin
system(L, 0) andL∗ see de Léon and Mart́ın de Diego [19]. In the quoted paper, the time-
independent case was considered, but the proof can be easily adapted for the time-dependent
case.

Next, we will prove the second part. The trick of the proof is to define a connection0̄ in
the fibrationT (j1ρ) : J 1π −→ J 1γ along the submanifoldH̃ . The horizontal distribution
H̄ of 0̄ is locally spanned by the vector fields(
∂

∂t

)H̄
= ∂

∂t
− 0i

∂

∂qi
−
(
∂0ia

∂t
va − ∂0ia

∂qj
0jva + ∂0i

∂t
− ∂0i

∂qj
0j
)
∂

∂vi(
∂

∂qa

)H̄
= ∂

∂qa
− 0ia

∂

∂qi
−
[
vb
(
∂0ib

∂qa
− 0ja

∂0ib

∂qj

)
+
(
∂0i

∂qa
− ∂0i

∂qj
0ja

)]
∂

∂vi(
∂

∂va

)H̄
= ∂

∂va
− 0ia

∂

∂vi
.

Thus, we obtain a local basis of vector fields onJ 1π alongH̃ :{(
∂

∂t

)H̄
,

(
∂

∂qa

)H̄
,

(
∂

∂va

)H̄
,
∂

∂qi
,
∂

∂vi

}
.

Its dual basis of 1-forms is

{dt, dqa, dva, η̄i , d((η̂i)/J 1π )}.
Therefore, the set{η̄i , d((η̂i)/J 1π )} is the annihilator ofH̄ . A simple computation shows
that H̄ is globally defined alongH̃ .

If h̄ denotes the horizontal projector associated with0̄, we have h̄∗(dt) = dt ,
h̄∗(dqa) = dqa, h̄∗(dva) = dva, h̄∗(η̄i) = 0, andh̄∗(d((η̂i)/J 1π )) = 0.

Consider the pull-backs of the 1-forms2L∗ and dL∗ to J 1π by means ofT (j1ρ). After
a long but straightforward computation we deduce that

h̄∗(2L) = (T (j1ρ))∗2L∗

h̄∗(dL) = (T (j1ρ))∗ dL∗

alongH̃ .
If ξ is the solution of the constrained dynamics onH̃ we have, from lemma 7.8,

Lξ2L = dL− LQ(ξL)2L (38)

and from lemma IV.4 of [19] and lemma 7.9 we get

Lξ (h̄∗2L) = h̄∗(dL)− h̄∗(LQ(ξL)2L)− ᾱ

= h̄∗(dL)− ᾱ

whereᾱ is the 1-form onJ 1π alongH̃ defined by

ᾱ(Z) = −2L(R̄(ξ, Z)− h̄([ξ, v̄(Z)]))

R̄ being the curvature of̄0. Since2L is semibasic and̄0 is a connection in the fibration
T (j1ρ) : J 1π −→ J 1γ (along H̃ ), we deduce that2L(h̄([ξ, v̄(Z)])) = 0, and hence we
get

ᾱ(Z) = −2L(R̄(ξ, Z)).

In local coordinates we obtain

ᾱ = ∂L

∂vi

[
vbRiab − Ri0a

]
θa.
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Therefore, we deduce thatᾱ is precisely the pullback byj1ρ/H̃ of αL,0.
Thus, we get

Lξ (T (j1ρ))∗2L∗ = (T (j1ρ))∗(dL∗)− ᾱ.

Let ξ ∗ be a vector field along the mapJ 1ρ/H̃ : H̃ −→ J 1γ , and suppose that it is the
solution of the equation

LY2L∗ = dL∗ − αL,0 iY γ
∗
1 (dt) = 1

or, equivalently,

iY�L∗ = αL,0 iY γ
∗
1 (dt) = 1.

Then every vector field̃Y along H̃ which projects ontoξ∗ (that is, (T (j1ρ)/H̃ )(Ỹ ) = ξ∗)
verifies that

LỸ (T (j1ρ))∗2L∗ = (T (j1ρ))∗(dL∗)− ᾱ iỸ η = 1. (39)

Moreover, the horizontal lift ofξ ∗ with respect to0̄ (i.e., the vector fieldX̃ such that
X̃(x̃) = (ξ∗(x̃)H̄ )(j1ρ(x̃)), for all x̃ ∈ H̃ ) verifies (39). Sinceξ also satisfies (39) and
ξ ∈ H̄ , we deduce that(ξ∗)H̄ = ξ and(T (j1ρ)/H̃ )(ξ) = ξ∗. �

Remark 11.4. Theorem 11.3 shows that in order to obtain the dynamics of theČaplygin
system(L, 0) we first reduce the LagrangianL to a new LagrangianL∗ defined on the
reduced phase space. The new system is unconstrained, but subjected to a non-conservative
force αL,0. If we solve the dynamics forL∗, we then recover the original dynamics by
horizontal lift with respect to the connection̄0. The procedure is close to that known as
symplectic reduction procedure.

Corollary 11.5. Let f be a constant of the motion for the non-conservative system
(L∗, αL,0), that is, ξ ∗(x̃)(f ) = 0 for all x̃ ∈ H̃ . Then, (j1ρ/H̃ )

∗f is a constant of the

motion for theČaplygin system(L, 0), i.e. ξ(f ) = 0. Conversely, ifg is a projectable
function ontoJ 1γ which is a constant of the motion for thěCaplygin system(L, 0), then
its projection is a constant of motion for system(L∗, αL,0).

The last corollary yields a method to obtain constants of the motion for non-holonomic
mechanical systems (see also [1, 2]).

Example 11.6. Consider the Lagrangian functionL and the distributionD of example 8.5.
We have the fibration
ρ : E = R × (R2 × S1) −→ N = R × (R × S1)

(t, x, y, φ) 7−→ (t, x, φ).

In the remainder of this example we will restrict ourselves to the open setR × (R2 × U),
beingU the open set ofS1 consisting of the points such that cosφ 6= 0.

We define a connection0 in ρ such that the horizontal distributionH is precisely
the distributionD. Thus, the distributionH is generated by the vector fields(∂/∂t),
(∂/∂x)+ tanφ(∂/∂y), and(∂/∂φ).

The curvatureR of 0 is given by

R = − sec2 φ
∂

∂y
⊗ (dx ∧ dφ).



Non-holonomic Lagrangian systems 1189

Since (L, 0) is a Čaplygin system, we obtain a projected Lagrangian functionL∗ :
R × T (R × U) −→ R given by

L∗(t, x, φ, ẋ, φ̇) = 1
2(sec2 φ)ẋ2 + 1

2φ̇
2.

Since(L, 0) is regular (see example 8.5),L∗ is regular too, and we have

2L∗ = ẋ sec2 φ dx + φ̇ dφ − 1
2((sec2 φ)ẋ2 + (φ̇)2)dt

�L∗ = dφ ∧ dφ̇ + sec2 φ dx ∧ dẋ + 2 sec2 φ tanφẋ dẋ ∧ dφ + (ẋ)2 sec2 φ tanφ dφ ∧ dt

+ẋ sec2 φ dẋ ∧ dt + φ̇ dφ̇ ∧ dt.

The 1-formαL,0 on J 1γ alongH̃ is

αL,0 = ẋ tanφ sec2 φ(−φ̇ dx + ẋ dφ)

which shows thatαL,0 is a bona fide1-form onJ 1γ .
The vector fieldξ ∗ which is a solution of the equations

iY�L∗ = αL,0 iY dt = 1

is just the projection ofξ onto J 1γ , namelyT (j1ρ/H̃ )(ξ) = ξ∗, whereξ is the solution of
the constrained system(L,H). Its local expression is

ξ ∗ = ∂

∂t
+ ẋ

∂

∂x
+ φ̇

∂

∂φ
− ẋφ̇ tanφ

∂

∂ẋ
.

Since the functionf = xφ̇−(tanφ)ẋ is a constant of the motion forξ ∗, from corollary 11.5
we deduce that the pullback(j1ρ/H̃ )

∗f is a constant of the motion for the constrained
system.
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