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Abstract. A geometrical setting in terms of jet manifolds is developed for time-dependent
non-holonomic Lagrangian systems. An almost product structure on the evolution space is
constructed in such a way that the constrained dynamics is obtained by projection of the free
dynamics. A constrained PoinéCartan 2-form is defined. If the non-holonomic system is
singular, a constraint algorithm is constructed. Special attention is devoteaplygin systems

and a reduction theorem is proved.

1. Introduction

In a recent paper [19] (see also [14, 15, 17, 18]), we have developed a geometrical setting for
non-holonomic time-independent Lagrangian systems, where the constraints are linear on
the velocities. That is, the Lagrangian functionlis= L(g*, ¢*) and the typical constraint
functions are of the form; (g%, ¢4) = (i) a(g)g*.

The aim of the present paper is to extend that geometrical framework for the case of
Lagrangian systems given by a time-dependent Lagrangian funktienL (¢, ¢*, ¢*) and
constraint functions which are affine on the velocities, 8ay, g%, ¢*) = (ui)a(t, 9)¢* +
h;(t,q). It seems almost evident that, in order to globalize the picture, we need to use
affine bundles [5, 8, 16, 21, 22]. In fact, the geometrical setting is as follows. We start with
a fibrationz : E — R and, then, we take the 1-jet prolongatidfr, which is, in fact,
an affine bundle oveE modelled on the vector bundlénx. So, the Lagrangian function
is supposed to be defined dix (the evolution space) and the constraints are obtained as
the evaluation maps of a local cobasis of a distributidron E. It should be remarked
that a compatibility condition with the fibration has to be assumedadn order to obtain
independent constraint functions as the theory demands in the classical setting [3, 4, 25].

Our approach leads us to write the constrained motion equations in an intrinsic way,
without explicit mention of Lagrange multipliers. To do this, we lift to two new
distributions onJz. A regularity condition on the constrained system is assumed to
obtain a solution of the dynamics. The regularity condition is automatically satisfied for
Lagrangian functions which are positive or negative definite, a usual assumption in the
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literature. In the regular case, we define an almost product stru¢®ur@) on Jiz along
the constraint submanifold such that the dynamics is just the projection Byof the
solution of the unconstrained system.

One of the main results of this paper is the following. There exists a constrained
Poincaé—Cartan 2-form» on D such that the solution of the dynamics is a unique non-
autonomous second-order differential equation living in its kernel. The result could be
interesting for quantization purposes, as we will show in a forthcoming paper. We notice
that the constrained Poiné&Cartan 2-formi coincides (up to the sign) with the one
obtained by Sarlet, Cantrijn and Saunders [27-29, 31].

If the constrained system is not regular, we construct a constraint algorithm which gives
a final constraint submanifol®,; of D on where there is a solution of the dynamics. Of
course, the dynamics is no longer unique. The procedure is quite similar to that developed
by Gotay and Nester [9—-11] for singular Lagrangians. The constrained submanifolds are
obtained by demanding the preservation of the constraints on the time, as in the Dirac—
Bergmann formalism [7].

The Hamiltonian counterpart is also studied. Nothing special is obtained since both
formalisms are ‘isomorphic’ by means of the Legendre transformation. However, the results
illustrate the differences in comparison with the time-independent case.

A special kind of constrained system is studied at the end of the paper, the so-called
Caplygin systems. They are constrained systems where the constraints are imposed by
the existence of a connection in some intermediate fibraiorR—~ N — R. In other
words, the motions have to be horizontal curves. We assume that the Lagrangian function
is invariant by horizontal lifts. This is just the case when we are in presence of principal
fibrations and we demand invariance by the action of the structure group [12]. We obtain a
sort of reduction procedure which remembers the symplectic reduction procedure. In fact,
our procedure gives a reduced free Lagrangian subjected to a non-conservative force in such
a way that the original dynamics are obtained by horizontal lift of the reduced one. We can
say that for non-holonomic systems the invariance by connections plays the same role that
the invariance by symmetries does for unconstrained systems. This reduction procedure
permits us to relate the constants of motion for the reduced system with the ones for the
original constrained system.

2. Evolution spaces
Let E be an(n + 1)-dimensional fibred manifold oveR, i.e., there exists a surjective
submersion
7. E— R.
We denote by/'x the 1-jet manifold of local sections af, namely

Ji _ | ile/6UCR— Emop=idy
- U open neighbourhood of

If (¢, ¢*) are fibred coordinates oA, then J1x has local coordinateg, g#, v4). In fact,
if ¢(s) = (s, p"(s)), s € U, then j1¢ has coordinates

d A
(r, 64 (1), im) .

Therefore, if E has dimension(n + 1), J'r has dimension2n + 1) and it is a fibred
manifold overE andR with canonical projectiong o : Jir — E andn; : Jir — R,
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respectively. In local coordinates, we have
mio(t, g™ v = (1, ¢") mt, gt vt =1 w(t,q") =1.

Jet manifolds/'z will be evolution spaces for time-dependent mechanics.
We define a canonical embeddingJ'r — TE as follows:

(o) = (1)

whereg (1) € Ty E is the tangent vector atof the curvep (s). If we take local coordinates
(t, g4, T, ™), we have

u(t, qA, vA) = (t, qA, 1, vA).

3. The vertical endomorphism

There exists a canonical endo[norphisfmf T J'r, i.e. a tensor field of typél, 1) on Jrx,
defined as follows [30]. Let b& € ]}[1(15(.]17'[), and take its projections t& andR:

Tr10(X) € Ty E Tmi(X) € T,R.

Therefore, we havé@ rr o(X) —T¢(T (X)) € (V1) (), WhereVr is the vertical subbundle
of T E consisting ofr-vertical tangent vectors oA. Now, we put

J(X) = (Tr10(X) = To(Ta1 (X)) 1,

where thev means the vertical lift of a tangent vector atto TE.
In local coordinates we obtain

7 a\ oA 9 7 a\_ 9 7 9 _0
ar) dvA agh ) ovA ava )
or, equivalently,
- 0
J=(dg"* —vidH® — .
(dg” —v7d) ® - 3

If we denote bys4 = dg* — v dr the set of local contact forms ai'z, we obtain the
more familiar expression

- 9
J=0"® —.
® ovA

4. Second-order differential equations

The manifoldJ?r of 2-jets of local sections is defined in a similar way:

j2. _ | JP/0UCR— Emogp=idy
- U open neighbourhood of

We take local coordinateg, ¢#, v4, a®) on J?x. J%r is a fibred manifold ovev'r, E
andR with canonical projections

712,1:J271—>J1n 712,0:]2;1—>E nz:Jzn—>]R
locally given by

ma(t, gt v, at) = (¢, ¢*, v mo(t, gt v, at) = (1, q")

mo(t, gt vt at) =1t.
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There exists a natural inclusion @fx into the 1-jet manifold/z;. In fact, define
jiJ%m e Jim
JEe > iy
wherey (s) = jS1¢>. In local coordinates we obtain
j(t, qA, vA, aA) = (t, qA, v, vA, aA).

Moreover, there exists a natural embedding/éf, into 7J'7. So, we have the following
chain of embeddings:

J7 N Jlnl <t

We will consider a special class of vector fields dhr.

Definition 4.1. We say that a vector fiel§ on Jxz is a non-autonomous second-order
differential equation (NSODE for simplicity) it : J'z — TJ'7 takes values into
(o j)(J?m).

Therefore £ is a NSODE iff it has the following local expression,

ad a ad
A A A A
t,q”, = —+vi— —
§(t.q" %) ot v g4 § ovA

where&4 = £4(1, g*, v4).

If we put n = (71)*(dt), we obtain the following geometrical characterization of a
NSODE.

Proposition 4.2. ¢ is a NSODE iff J(¢£) = 0 andn(¢) = 1.
Notice that a local sectiop of 7 : E — R may be viewed as a curve iB.

Definition 4.3. A local sectiong of = : E — R is a solution of a NSODE if the 1-jet
prolongationjl¢ of ¢ to J1z is an integral curve of.

Thus, ¢(t) = (¢, $*(¢)) is a solution off iff it satisfies the following system of non-
autonomous differential equations of second order:

d2¢A A B d¢B d¢A A
az = ¢ <“f’ ’dt) o S

It should be remarked that an integral curweof a NSODE ¢ is necessarily a 1-jet
prolongation, say = jl¢, where¢ is a solution of.

Remark 4.4. If E is the trivial fibrationprg : E = R x 0 — R, we have canonical
identifications
Jiprr =R xTQ J?prr =R x T2Q JYpre)1 =R x T(T Q)

whereT2(Q is the tangent bundle of order 2 ¢f.
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5. Lagrangian mechanics in jet manifolds
Let L : J'r — R be a non-autonomous or time-dependent Lagrangian function. Define
the Poincag—Cartan forms associated toby
©®, = Ly + J*(dL) (Poincaé—Cartan 1-form)
Q; = —dO, (Poincaé—Cartan 2-form)
Denote byp, = dL/0v” the generalized momenta. Then we have
O = (L —v*pa)dt + padg?.
Of course, we also have
O, = Ldt + pot.

We say thatl is regular if and only if the Hessian matrix

9°L
dvAgvB

is non-singular. SoL is regular iff (2, n) is a cosymplectic structure aftz. This means
that 2, andn are closed and] A n is a volume form (see [6,13, 20]). In this case, there
exists a unique vector fielgy on J'7 such that

iS,‘QL =0 l'gl‘n =1 (1)

In other words, ifb; : TJ'r — T*Jx is the vector bundle isomorphism defined by

br(X) = ixQp + n(X)n, we haveé, = bgl(n). &, is the Reeb vector field of the

cosymplectic structuré?;, n), and it will be called the Euler—Lagrange vector field.
Suppose that; is locally given by

ad ad ad
=% xa 0 a9
L=t dgh T8 A
A direct computation from (1) gives
dpa oL dps dpa
AvyvB B B B A
xBIPA _ xp O | xBIPE Pr_o 2
U agE ogb T o T8V s @
_%_UB%J’_E_}_XB%_XB%_ B%:O (3)
ot dgh  9g” g dgB ovB
ap
(x® - vB)ﬁ =0. 4)

From (4) and sincd is regular, we deduce thai* = v#. Thus, (2) and (3) become

ap ap ap oL
A OPA | BOPA | BOPA O g (5)
ot dgB dvE  9gA4
aﬁA BaﬁA BaﬁA oL
A A B =0 6
ot TV agB TS uB T ggh ©

Therefore, we have the following.

Theorem 5.1. (i) &, is a NSODE.
(ii) The solutions oft; are just the solutions of the Euler—Lagrange equationd.for

d<8L>_8L 0 4 dgt

il i = 1 7
dvA g4 v dr )

dr
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6. Non-holonomic Lagrangian mechanics. Motion equations

Suppose thaL : J'7r — R is a regular Lagrangian subjected to a set of non-holonomic
constraints given by a:-codimensional distributiorD on E. This means that the only
allowable evolutionsjl¢ have to belong toD. More precisely, the tangent vectors
é(t) € Ty E have to be inDy . It should be noted that a compatibility condition Brhas
to be assumed. In fact, iB° is the annihilator ofD, we will assume that*(dr), ¢ (D),
or, equivalently,D® A 7*(df) # 0. Remark that ifr*(dt) € D°, thenD N J'z = @ which
implies the incompatibility of the constrained system.

Let u; be a local basis oD?, i.e.

D= (u; /1<i<m).
We define two distribution®)¥ and D¢ on J1x as follows. Letuf be the complete lift of
u; to TE. Let us recall that ifu; = (u;)4 dg” + h; dt, then
uf = ()G dg™ + () de? + hids + hidr
d(ui)a | _p9(ii)a A A
= d ad
(t g TT ggn )M At T T

Here u! denotes the vertical lift oft; to TE, i.e. the pull-back ofu; by the canonical
projectionty : TE —> E. Hence, its restriction to'1x is given by

(i) a (i) a dh; oh;
¢ _ B A _ A B
:ui/lln_< ar TV 9q" dg” + (i) a dv” + o TV 945 dr.

dhi ok

>dt + h; dr.

We putji; = f*(,uf/ﬂﬂ). Thus, we get

i = (ui)adg® — v (ui)ade
= (n)ab”.
Now, we defineD" and D¢ by prescribing that their annihilators are locally generated by
{i} and{i, uf )b, e
(D% = (@) (DO = (s 15 1y)-
First of all, note that{;, ufﬂlﬂ} are linearly independent at every point éfz. This

follows taking into account that, from the assumption@nthe local 1-forms{(u;)a dg4}
are linearly independent. Secondiyp")° and(D¢)° are well defined alon@ = DN J'x.
In fact, let{x;} be another local basis @°. Thus, we have

Wi = A
where (A{) is a non-singular matrix at every point in the overlapping of the two

neighbourhoods wherg; and p; are defined. The following formulae are obtained by
a direct computation

(D jp = (AD 0 07T o) + A1, 1 -
L= A iy
From (8) it is easy to prove thdd¥ and D¢ are well defined alond = D N Jix.
Now, the constrained motion equations can be written as follows
ixQ e (DV)° ixn=1 X e D° 9)

along the points oD.
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In fact, (9) can be equivalently written as
ixQr =M ixdr =1 1i e (X) =0 ii(X)=0 (10)

whereA’ are some Lagrange multipliers to be determined [25].
Note that the first two equations in (9) imply that any solutdrhas to be a NSODE,
and, then, the third equation in (9) becomes

8]’1,‘ B Bh, A a(ﬂi)A B a(Mi)A
(at +v 8q3)+v < o1 +v 9q"

Now, let¢; = (f1;),,1, be the restriction of the functiof; to Jim. Let us recall that given
a 1-formu on a manifoldV, we define an evaluation functighon TN by (X) = (u, X).
Sincef;(t, g4, v, ) = (ui)at? + h;t, we deduce that

¢i(t. g v = (i) av® + b (12)
which is the usual form of the constraints in the local analysis (see [25]). By comparing
(11) and (12) we deduce that the conditidne D€ is equivalent to ask thaX has to
be tangent to the submanifold ot locally defined by the vanishing of thg's. This
submanifold is justD = D N J'z, where D is now considered as a submanifold BE.
Note that the functiong; are independent sincB® A 7*(dt) # 0.

From (10) we deduce that the solutions¥&atisfy the following system of second-order
differential equations

d /oL oL ; dg*
el — = A A1
dt <8UA> g4 (i) v dr

subjected to the constraings(z, ¢*, v*) = 0.

) + (u)aX@hH =0 (11)

Remark 6.1. Notice that equations (9) are restricted to the submanifbld since
pi(X) = ¢;=0.

7. Solving the motion equations

In this section we shall give a procedure to solve equations (9) by using a very geometrical
method. First of all, we give the following definition.

Let S be the distribution orv'z obtained from(DY)° by means of the isomorphism
by : T(J'w) — T*(J'x), namely

S@) =br(x) " ((DY)?) Vx € D.
In fact, S is a distribution along the points db. If we put
iz,82L +n(Zi)n = p;

then S is locally generated by th&;’s. Notice thatZ; is completely characterized by the
conditions

iz, = i izn=0.

Thus, Z; is amy p-vertical vector field alongﬁ.

Definition 7.1. The constrained system is said to be regular if
S,NT,D=0 Vx € D.
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Now, let us explain the meaning of the regularity condition.
PutC;; = Z;(¢;) and take the matri€ = (C;;). Then, we have

Proposition 7.2. The constrained system is regular iff the matries= (C;;) are non-
singular.

Proof. Suppose that the constrained system is regular. Take an arbitrary linear
combination of columns of at some pointc such that

Y NZix)(¢) =0.
i=1

Thus, YA Z;(x) € T, D which implies that}~ A/ Z;(x) = 0, and hence.! = A2 = ... =
A" =0.

Conversely, supposébe non-singular and let b& € S, N7, D. Thus,X = SAMZi(x)
and X (¢;) = 0, Vj, 1 < j < m which implies that)_1'Z;(¢;) = 0. Therefore, we deduce
thatal = ... = A = 0, and consequently = 0. O

Proposition 7.3. If the Hessian matrix

9%L
dvAovB
is positive or negative definite at each paint D, then the constrained system is regular.

Proof. The result follows since

Cij = =W (i) a(uj)s

where (W4?) denotes the inverse matrix of the Hessian mats&z /dv*dv?). O

Remark 7.4. The last proposition clarifies the usual assumption on the positive or negative
character of the Hessian matrix &f It is nothing but a sufficient condition to ensure the
regularity of the constrained system. For instancegldte a Riemannian metric on the
vertical bundleVr such thatg = gap(t, ) dg”* dg®. As we know,m1o : Jir — E

is an affine bundle modelled on the vertical vector bundle —> E. The choice of a
global sections of w1 o (which is equivalent to the choice of a connection in the fibration
7 : E — R [30]) leads us to define an associated kinetic energyLly ¢*, v4) =
gasvv? + 20450258 + gapsts®, wheres(t, g%) = (t,q%, s*(t,q)). Therefore, the
Hessian matrix become&?L/dv49v? = g45). In case of E be the trivial fibration

prr - E = RxQ — R, we can take the standard connection suchsttag?) = (¢, ¢4, 0).

Thus, the associated Lagrangian function is jugt ¢*, v4) = gagvv®.

Since dimD = 21 + 1 — m and dimS(x) = m, Yx € D, we conclude the following.

Proposition 7.5. If the constrained system is regular, we have

T.(J'7) =S, ® T. D Vx € D. (13)
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Moreover, we can realize this splitting as follows. Define a linear map
Q. : T(J'm) — Tu(J'n)

for everyx € D, by putting
Q, = CY(0)Z;(x) ® dgi (x).

A direct computation shows th@f = Q, and 9,(X) € S(x), for all x € D and for all
X e T.(J'). Thus,

X =Q:(X) + (X — Q:(X))

is the splitting given in (13).

The above splitting is intrinsic. Nevertheless, in order to clarify our procedure, we shall
study the behaviour 0@ by a change of local basis. Take another local bgsj$ of D°
such that

wi = A
Hence, we obtain
(UDa =N (w)a = Ak

whereu, = (u))4 dg”* + k) dr. Therefore, the new constraint functions definibgare

¢ = Al¢. (14)
On the other hand, we get
Z,=AN7Z; (15)

where{Z!} is the new local basis of. From (14) and (15) we have
Ci; = Zi(9)) = N[ Z,(Ajgs)
= AN Zi(hs) + Nids Zi(A})
=Cr AT A
along the points oD. Thus,
€7 =cr(AThHiah]
along D. This implies
Q' =(C)Z] ® dg;
= C"(ATH (ATHIATZ, ® d(AT )
=Q+C A Y ¢pZ, @ dA?
=Q

along D. Therefore,Q is well defined along and it is a tensor field of typl, 1) on J 'z
along D. SinceQ? = Q, we have obtained an almost product structure/ém along D.
If P=id—- 9, thenP(&,)(x) € T, D, Vx € D. Thus,P(sLﬂj) is tangent toD, say

P(EL,p) € X(D). Moreover,
PGrp) =6rp — EL,p)
=&,5 — CUEL 5(9)Z;
which implies thatP(§. ) is a solution of (9). So, we have proved the following.
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Proposition 7.6.  If the constrained system is regular, there exists an almost product
structure (P, Q) along the constraint submanifold = D N J'z such thatP(sL/D) is

tangent toD, and is a solution of the constrained dynamics.

Remark 7.7. Since (2., n) is cosymplectic,P(sL/[)) is in fact the only solution of the
constrained motion equations.

From the regularity of the local matricés we deduce thatP, Q) may be extended (in
many ways) to an open neighbourhood/af Therefores may also be extended to an open
neighbourhood o. This fact will be used in the following lemmas.

Lemma 7.8. Given a regular constrained systdih, D), the vector fieldé solving the
constrained dynamics satisfies

L0, =dL — Lo, 0L
along the points oD, where£ denotes the Lie derivative.

Proof. It follows since& = P(§,) =&, — Q&) and L, ®, = dL. O

Lemma 7.9. Under the same hypothesis as in lemma 7.8, we have
ACQ(SL)GL (S (DV)O.

Proof.  SinceQ(&) = > 1, A Z;, with A/ = C & (¢;), we deduce that
Lo O = ‘CZ}":l Az, OL
=iy, nizdOL + Ay 2iz,0O1)

m

= —iyy aiz S = — ZAj'aj
=1

since the vector fieldZ; aremryo-vertical and®, is semibasic. O

8. The constrained Poincagé—Cartan 2-form

Let L : J'7 — R be a regular constrained system subjected to a set of non-holonomic
constraints given by a:-codimensional distributiorD on E. For every pointx € D =
D N Jim, define

w(x) = Q1 (x) — (o)L (X)) A n(x).

Hencew is a 2-form onJ'z along D. We also have thag(x) A "(x) # 0 for all x € D.
Thus, there exists a unique vector fiefdon Jz along D such that

In fact, a direct computation proves théit= P (¢, ).
Next, we get the following.

Theorem 8.1. If @ and7 are the restrictions ab and to the constrained submanifold
D = DN J'x then the solutioP (¢, ) of the constrained dynamics verifies the equations

ixd=0 ixn =1 a7
Moreover, the uniqgue NSODE on D satisfying (17) is jusP &L p)-
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Proof.  Since the vector fieldD(éL/[)) satisfies (16), then it also verifies (17).

Now, let X be a NSODE onD (that is, JX = 0) such thatiy® = 0 andiyij = 1.
Then, we have that

(ixo)(P(Y)) =0 (18)

for all vector fieldsY on Jz along D. ~

On the other hand, i# is a vector field o/ along D, using thatQ(Z) is w1 o-vertical
and the fact tha¥X is a NSODE, we obtain
(ixw)(Q(Z2)) = —(igz) QL) (X) — (i@, L) (X)IN(Q(Z)) + (ige,)R)(Q(Z)) = 0. (19)

Finally, from (18) and (19), we conclude thatw = 0 which implies thatX = PGLp)-
O

Definition 8.2. The 2-formo is said to be the constrained PoingaCartan 2-form.

Remark 8.3. (i) The 2-form @ coincides (up to the sign) with the one obtained by
Saunderst al (see [31]). It should be remarked that our result holds for arbitrary regular
non-holonomic Lagrangian systems, without any assumption on the positive or negative
definiteness of..

(ii) Note that(a, 77) is no longer cosymplectic so that it may be another solution of the
equations

Example 8.4. (The curve of pursuiSuppose that a poimt moves on the axi®x, the
distanceO A being a prescribed functiofi(¢) of . The particle of mass:, whose position

at timezr is (x, y), moves in thexy-plane, and is constrained so that at each instant its
velocity is directed towardg. This curve is callecturve of pursuit(see [24]).

Consider the trivial bundler : R x R> — R, (¢, x,y) = t and the jet bundle
Jim with coordinates(t, x, y, %, y). We can describe this system by the Lagrangian
L:J'rm —R

L =1m@?+5%
and the distributionD globally annihilated by the 1-form
pn=ydx+ (f(t)—x)dy.
A direct computation shows that
Op = —3im@x? + 3 dr + mi dx + my dy
Q =mxdi A df +mydy A dr +mdx A dx +mdy A dy

.0
€L

= o + X + ya.
Therefore, the distributio is defined by prescribing its annihilator be generated by the
global 1-form
p=ydx+ (f() —x)dy —xyd — y(f (1) —x)dr.
Hence, the distributiors is generated by the vector field
BEERGOERK]

Z=—"— -
m 0x m ay
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Since S, N T.D = 0 for all x € D, we deduce that the constrained system is regular.
Notice thatL is the kinetic energy associated with the Riemannian megtran R? given
by g = m(dx? + dy?) (see proposition 7.3 and remark 7.4).

From the decompositiofi, /17 = S, @ T, D, we get the complementary projectors

e 10w iy (-0
Q=C Z®d¢_y2+(f(t) 2 -+ (f(1) —x)

0
®()'cdy+yd)'c+a—{ydt—ydx—i—(f(t)—x)dy)
P=id-Q
where

1 2 2 . .
— 07+ (f) —x)9) ¢ =yx+(f@) —x)y.

The solution of the constrained dynamics is the vector field

a0 yy of
§=PCLp) =g +i5 +I50 - y+(f(t)—x)2< >3x

IO RE) <3f)
y2+ (f(t) —x)? ay

So, the solutions of the constrained motion equations are the solutions of the following
system of non-autonomous second-order differential equations:

B ¥y of . (fw=xy o
VAo —x2ar 0T TR (0 -2
Finally, the constrained Poind&+Cartan 2-forma is the restriction to the constraint
submanifoldD of the 2-form

wo=mxdx A dt +mydy A dt + mdx A dx + mdy A dy
my of
T dx A df + (f(r) —x)dy A df
1 () = )28t(y (f () —x)dy ).
Example 8.5. (An specialCaplygin sleighi23], (p 94), [26, 31].) Let us consider the free
motion of a solid body on a horizontal plane in the case when the projection of the centre
of mass coincides with the point of contact of a sharp wheel and the plane.
Consider the trivial bundler : R x R? X S — R, n(t,x,y,¢) = t and the jet
bundleJx with coordinates, x, y, ¢, x, v, ¢). We can describe this system by the regular
Lagrangian functiorl. : J'7 — R,

L= 3"+ 52+,
and the distributionD globally annihilated by the 1-form
1 = cos¢ dy — sing dx.

So, the constraints are given gy, x, y, ¢, x, v, ¢) = (Cosp)y — (sing)x = 0. In an open
set where tap is defined, the constraints are given by= x tan¢.
A direct computation shows that

=xidv+ydy +¢dp — L2+ 32+ 9P dr
Q. =dx A di +dy A dy'+d¢Ad¢'s—dm(xdx+y'dy'+¢'>d¢)
0 d 8
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Because
it = cos¢p dy — sing dx + (x Sing — y cose) dt
the distributionsS is generated by the vector field

Z =sing 9 COoS¢p 9
B 9x ay’

SinceS, N T.D = 0 for all x € D, we deduce that the constrained system is regular. In
fact, L is the kinetic energy associated with the Riemannian megtee dx? 4 dy? + dg¢?
onR? x S (see proposition 7.3 and remark 7.4).

The matrixC is just a real function, say = Z(yy) = —1, and we get complementary
projectors

Q=-7ZQdy P=id+Z@dy.
Finally, the solution of the constrained dynamics is the vector field
. d

d ) . d
§=P(E),p) = (az“ +y+

T T
ax oy "% y‘pax+x¢)/b'

ay

However, along an open sét of D for which cosp + 0, we can choose local coordinates
(t,x,y,¢,x,¢) so thatt becomes

e= 15 pitang) 442~ igtang) ]
=3 xa (x ¢5 ¢% xX¢ ¢)£

Again by a straightforward computation we deduce that the constrained ReiQatan
2-form is given by

w=dx A di +dy A dy+dpAdp—dr A di + ydy + ¢ dp — yd dx + 3 dy).
Thus, its restriction td/ becomes

&= —((dOr),y — i dt A (dy — tang dx))
which is (up to the sign) the 2-form obtained in [31].

9. The singular case

Suppose now that the constrained system is not regular, that is, weShavi, D = 0, for
somex € D. From proposition 7.2, this fact is equivalent to the non-regularity of the local
matricesC = (C;;).

We consider the distributio; on Jz along the points oD given by

(SL)x =5 ® <§L(x))

for all pointsx € D.
We have

SeNTyD C (S)x N T D

for any pointx € D.

In section 7, we have constructed an almost product stru¢fr®) on Jz along D
so that the unique solutioé of the dynamics is just the projection I§y of the Euler—
Lagrange vector field,, that is,§ = P((§.),5). In the regular case, we have that

dim(S,), N T.D = 1, and a generator of this vector space is precigéty.
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Now, consider the following subset id:
Dy={xe D/S;NT.D C (S), N T, D}
which is supposed to be a submanifold. At the pointinthere exists at least a tangent
vector X = &;(x) + A Z;(x), for some real numbers’ € R, such that it belongs t@, D.

However, X is not necessarily tangent 0,, and, therefore, we are compelled to define
the submanifoldD3 of D, as follows:

D3 = {x € D2/S: N TDz G (S), N T, D3}
Proceeding further, we obtain the following sequence of constraint submanifolds

i Dy Dy Dy Dy=D
where, for anyk > 1 we have

Dy = {x € D_1/Sx N T Dy_1 S (Sp), N T Dy_1}.
In the following, we will suppose that this algorithm stabilizes, that is, there exists an integer
k > 1 such thatD;;1 = D; and dimD; > 0. We denote byD, = D, the final constraint
submanifold, and then there exists at least a vector fiedth D, satisfying

(ieQ € (D)%) 5, (ign=1),p,- (20)
Along the points off)f we have the following strict inclusion

S, NT.Dy S (Sp), N T, Dy

for any pointx € D.

Then, there exist vector fieldk on D, such thatX (x) € (S.), N T, Dy but X (x) ¢
S, N Tx[)f. Therefore, we can select a vector figidon Df such thatt = (¢, + A’ Z,-)/Df
for some suitable values of the Lagrange multipligr®n [)f. In particular we have shown
thaté; (x) € S, + T, Dy.

As in the regular case, it is possible to construct almost product structures along the
points of Df such that the projection of the Euler—Lagrange vector figldgives us a
solution of the constrained dynamics. 3

First of all, we will assume that the subspagen T, Dy has constant dimensionfor
any pointx € Df. Now, we splitS, as direct sum of two complementary subspaces, say

Sy =8, ® (S, N T Dy).
It is clear that din®, = m —r, and this splitting is not unique.
Next, using thatl, Dr N S, = {0}, we split the whole tangent spade(Jin):
T,(J'n) =S, ® T.D; ® M,, x € Ds
where M, is a suitable complementary subspace.
There exist three projectors associated with the above splitting:
Q, : T.(J'n) — &,
(P, : To(J ) —> T, Dy
(P2)y : Te(Jim) — M.
Define the projectofP, = (P1). + (P2).. Sinceé (x) € S, + Tfo, we deduce that
P61 (x)) = (P« (61(x)), and along the points ab, we have that
1P, (51 (0 S2L(X) = E(e,(0)- Q. (5 (1)) 2L (X)
= —i0, QLX) € (DY)]



Non-holonomic Lagrangian systems 1181
and

P, (6, N (X) = L(g,(0-0Q. (5 (o) 1(X)
=igwnk) =1
Moreover, P, (1 (x)) € Tx[)f. We deduce tha’P(éL/Dv) is a solution of the constrained

dynamics and there exists an ambiguity of the solution of the dynamics because any vector
field of the formP (&, 5 ) + X, with X € SN T Dy is a solution of the dynamics, too.

We have chosen complementary distributiéhand  in order to obtain the dynamics.
Note that it is possible to realize both decompositions, Say- S @ (T Dy N S) and

T(J'n) = S@® TD; ® M along Dy. In fact suppose thaD; is locally defined by the
vanishing of the function®;, i = 1, ..., p, and take a local basig:;} of D°. Denote by
Z; the corresponding o-vertical vector fields alond and byC, the matrix with entries
(Cp)ij = Z;(¥;). We consider the linear map

U, S — R ue S — wW),...,u(V,))

for a pointx e Df. It is evident that kew, = S, N Txf)f. Furthermore, the associated
matrix with &, with respect to the basi<Z;(x), ..., Z,,(x)} and the canonical basis &"
is precisely(Cy),.

We have assumed th@D; N S has constant rank. Thus, the matrixC; has constant
rankm —r. Suppose that the matr&, = ((Cy)i;), 1 <i’, j' <m —r, is regular. In such
a case, we define a project® by

Q=(Cp'"'Z; ® dW;
Where((C})"'f') is the inverse matrix of ;. Note thatS = (Z; / 1<i’ <m—r). If we put

P = id — Q we obtain an almost product structuf®, Q) along D;. The decomposition

P = P, + P, is obtained by choosing a complementak of S @ TDy. This choice
corresponds to the ambiguity in the determination of the remainder Lagrange multipliers.
Indeed, if we computé?(éL/f,f) we obtain

Ly — —(CH"T NZ o
P = (8- €V w07;)
and a general solution is of the form
P(%L/b/) +Y

whereY € TDf N S. So, the only Lagrange multipliers determined are just the components
of Z;’s.

10. The Hamiltonian formalism

Let L : J'7r — R be a regular time-dependent Lagrangian function. We define the map
Leg : J'm — T*E by

Leg(j1¢)(X) = (O1)(j24)(X)

for jl¢ e J1w andX € Ty E, whereX is a tangent vector gf'¢ such thai(T10)(X) = X.
In local coordinates we obtain:

Leg(t7 invA):(tﬂ quL_vAﬁ/h ﬁA) (21)
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Now, if x is a point of E we consider the subspa¢&’E), of T;'E given by
(TFE), = {a € T'E [ iya = 0,Yu € (Vr),}.

Then, the spac&E = |J, (T, E), is a vector subbundle of; : T*E — E of rank 1.
We will denote byJz* the quotient bundlg/lz* = T*E/TE. J'n* is a vector bundle
over E of rankn with canonical projectiont; : Jin* — E. J'z* is also fibred oveiR
with projectionz} = w o f: Jin* — R.

If (¢, 9%, p;, pa) are local coordinates dfi* E then we have local coordinatés g*, p;)
onT}E and(t,q*, pa) on Jlx*.

Letv : T*E — Jz* be the canonical projection. We denote ley : Jin — Jin*
the mapleg = v o Leg. Using (21) and the fact that is regular, we deduce thdteg is
an inmersion and thdkg is a local diffeomorphism. Assume, for the sake of simplicity,
that L is hyper-regular, that ideg : J'r — Jlz* is a global diffeomorphism. In such
a case, we define a global sectibn Jiz* — T*E of the projectionv : T*E — Jlz*
by h = Leg oleg™ (if L is regular we only have local sections of. 4 will be called a
Hamiltonian.

If wg is the canonical symplectic form ofi*E, we consider on/1z* the 2-form,
given by Q, = h*wg. A direct computation proves that:

() leg*Q, = Q; andleg*ny = n, where n; is the 1-form onJ'z* given by
m = (y)*(dr);

(i) the pair (€2, n1) is a cosymplectic structure ahtz*;

(ii) if X, is the Reeb vector field fof2,, n1), i.e.ix, 2, =0, ix,n1 = 1, then§, and
X, areleg-related;

(iv) suppose that in local coordinates

h(t,q*, pa) = (t,q", H(t,q*, pa), pa)-
Then, the integral curves of;, satisfy the Hamilton equations
dg* _ 0H dpa _ OH
dr— dpy dr 9gA’
Now, suppose thak : Jl7 — R is subjected to the non-holonomic constraints given
by the distributionD on E. Sinceleg : Jin — Jiz* is a diffeomorphism, we obtain that
D = leg(D) is a submanifold of/17* and we can transport the distributiof® and DV

from J1z to Jiz*. The induced distributions will be denoted Bf and DV, respectively.
The constrained equations would be

i € (DY)° iym=1 X e D° (22)
along D. We also can transport the distributishto Jir* and obtain a distrit_)utionﬁ on
{171* along D. Notice thatS is locally generated by the vector fields, ..., Z,,, where
Z; is then] ,-vertical vector field on/*z* defined by

i7,Qn = (eg™H* (1))  izm=0

forall j € {1,...,m}. Of course,Z; and Z; areleg-related.

If the constrained system is regula§, N 7.D = {0}, Vx € D. Proceeding as in
the Lagrangian side, we construct an almost product stru¢®r&) on Jz* along D,
which is leg-related with (P, Q). Then, the vect0r75(Xh/L3) is the unique solution of
the constrained Hamilton equations (22). Moreover, sificand X, are leg-related we
conclude thafP(sL/ﬁ) and75(X,,/D) areleg-related.
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If the constrained system is singuld,D N S, # 0 for some pointx of D. In this case,
using the diffeomorphisnieg : J'r — Jiz* we can transport the distributiofy, to Jim*
and obtain a distributiors; on J'z* along D. Furthermore, if we apply the algorithm
developed in section 9 to equations (22), we obtain a sequence of submamifplitere

Di ={x € Di_1/T.Di_1 NS, C T D;_1 N (Sp),) i>1

andD; = D. It is evident thatD; = leg(D;). Thus, both algorithms are related by means
of the Legendre transformatidag : J'r — Jl7*, so that if one of them stabilizes at some
stepk, the other one stabilizes too, and at the same level

Again, one can construct an almost product structure along the final constraint
submanifoIdD_f such that the projection of the vector fie{d’h)/ﬁf gives the dynamics
for the constrained system.

11. Constraints defined by connections

Assuming thatt is a fibred manifold over a manifolty which also turns out to be a fibred
manifold overR, we have the following commutative diagram
E
0

14
R

wherern, p andy are surjective submersions such that y o p. We also assume that a
connectionl” on the fibred manifolp : E — N is given.
Taking 1-jet prolongations we obtain the following commutative diagram

Jin
Jjtp
71,0 Jly
Y
E Y10
0
g N
' Y
R

where all the arrows again define fibred manifolds. We choose adapted local coordinates
(t, g%, q") for the fibred manifoldE such that

pt.q% q") = (t,q") n(t,q", q") =t y(t,q") =t.
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In this section we will consider a Lagrangian functién: J'r — R subjected to
non-holonomic constraints given by the horizontal distributtbrof I'. This means that the
only allowable motions are horizontal curves.

We will construct a suitable basis fdi. If we denote byX” the horizontal lift of a
vector fieldX on N to E, we obtain

A
—) = -1
dt a1 dq’

a\" @ ;9
= — -l _
aqd aqu aql

whereI" = T'(t,q% ¢/) and ' = Ti(t, 4", q’/) are the Christoffel components of the
connectionr.
Thus, we have

w={G) ()
[OREOR

is a local basis of vector fields ahtz. A straightforward computation shows that

and

{n=dt,n, =dg", n; = dg’ + T, dg" + I'"dr}
is the local dual basis and, moreover, we have
H® = (m;).
So, the constraint functions have the form
v 4+ T + TV = 0.
Define the curvature o as the tensor field of type (1,2) di given by
R = 3[h, h]

whereh is the horizontal projector associated withand |, k] is its Nijenhuis tensor (see
[20]). Thus,

R(h(uy), h(u2)) = v([h(u1), h(uz)]) (23)
R(h(uy), v(uz)) =0 (24)
R(w(u1), v(uz)) =0 (25)

for anyu;, u; € T, E, wherev = id — h is the complementary vertical projector. Since
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we obtain from (23) that
d d ;0
(4 (2) #) -
ad ad .0
(* (i) (345) = g e

ari  ari Tt o
- + + F]% - Fé A
ot ag® aq/ daq/

Z_LFZ or;, Fjar;_rjarg.
ab d9q®  9q* “9q) baqi

According to section 6, the constrained motion equations can be written as follows,

where

ixQ € (H)® ixn=1 X e HC (28)
along the points off = H N J1x. Equations (28) can be equivalently written as
ixQ = A7, ixdr =1 05 )i (X) =0 7i(X) =0 (29)

along the points off.

Now, we will consider a particular kind of constrained system, those c&ltgalygin
systems.

Definition 11.1. A Caplygin system is a constrained system given by a regular Lagrangian
L on Jz constrained by the horizontal subspaces of a connedtion the fibration
p: E — N, such that

L)) = L(™)y,) (30)
foranyu € TyN, y € N, x1, x2 € E, wherep(x1) = p(x2) =y, andy*(dt), () = 1.

Locally, condition (30) is translated as follows:
L(t,q* q', v, —T" —vT.) = L(t,¢%, ", v*, =" —v“T"}) \Z (32)
Remark 11.2. This class of constrained systems were originally considereédp]ygin
[23], and recently studied by Koiller in the autonomous setting [12] (see also [19]). Here,
we consider the non-autonomous case.
Condition (30) permits us to define a Lagrangian functignon J1y as follows,
L*(j'¢) = L@ @)™
for any jl¢ € J'y. In local coordinates, we deduce from (31) that
L*(t’ qaﬂ vﬂ) = L(ta qaa qiv va’ _Fi - UGFZ)

which implies by applying the chain rule that

aL 9L [or/ ar
- ( + ¢ ):o. (32)

dgi vl \ dg’ 94!
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We write down the constrained motion equations:

d /oL oL LB

— - =— ) AT 33
dt (81}“) 9q® ; “ (33)
d /oL aL :

— ) - ==X 34
dt (81}’) aq' (34)

wherev4 = dg?/dr and’ are some Lagrange multipliers to be determined.
From a straightforward but tedious computation, and taking into account (32), (33) and
(34), we obtain

d (oL*\ oL* oL ., .

— — = —— R, — Ry |. 35

dr (Bv“) 9g _ ov [v"Rep — Rou] (35)
We can define a 1-form, - along the mapj'p,; : H — J'y as follows,

(@r.r)x(U) = =(©1):(X) (36)

for ¥ € H andU € T,(J'y), whereu = jlp(¥) and X € T:(J'x) is a tangent vector
which projects onto the tangent vect®t(u)?, ((Ty1.0)(U))), with x = 710(¥). A direct
computation shows that

oL i i a
orr = ﬁ [UbRub — ROa] 0.
Next, consider the following equations (along the pointst

iyQr =apr iyy; (dr) = 1. (37)
If L is regular, we deduce that there exists a unique vector §ieldlong the map
Jtp i H — Jly, thatis,&* : H — T(J'y) andt,i, 0 £* = j'p,;, which verifies (37).
Moreover, for each point € H, we have
JE (@) =0
where, here,J denotes the vertical endomorphism shy. Thus,£* may be viewed as a

NSODE alongj'p, 5.
The following theorem relates both mechanical systems.

Theorem 11.3. The constrainedaplygin system(L, I') is regular if and only ifL* is
regular. In this case, the solutignof the constrainedCaplygin system is related with the
solution&* of (37) by projection:

T(j'p,)(E) =&
that is, the following diagram is commutative:

H \ T(jlp/l-})

T(Jy)
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Proof.  For a proof of the equivalence between the regularity of the constr&laptygin
system(L, ") and L* see de Lén and Marin de Diego [19]. In the quoted paper, the time-
independent case was considered, but the proof can be easily adapted for the time-dependent
case.

Next, we will prove the second part. The trick of the proof is to define a connekttion
the fibration7 (j1p) : J'7 — J'y along the submanifold?. The horizontal distribution
H of T is locally spanned by the vector fields

N B ar: ari ari i\ 9
— ) =—-T'"— — v — I+ — — — TV .
at at aq" at daq’ at aq’ av'
o \" 9 9 ) WA ar ATt N\ @
= D A (R iy IR e ‘

ag ag® Ik agq“ daq’ ag¢  dq’ av!

a a .0
= > i
(av“) v v

Thus, we obtain a local basis of vector fields bhr along A:

ANT faNT /o N 4 b
ot) "\ag®) “\ove) " aqi v’
Its dual basis of 1-forms is

{dr, dg“, dv®, 1;, A((7:)s17)}-
Therefore, the setn;, d((7;),,:-)} is the annihilator ofH. A simple computation shows
that  is globally defined alongd. i i
_If h denotes the horizontal projector associated with we have h*(dt) = dt,
h*(dg) = dg“, h*(dv") = dv®, h*(7;) = 0, andh*(d((%);), 1)) = O.
Consider the pull-backs of the 1-forngs . and d_* to J17 by means off (j1p). After
a long but straightforward computation we deduce that

h*(©1) = (T(j*p)"Or-
h*(dL) = (T (j*p))* dL*

T

along H.
If £ is the solution of the constrained dynamics Bnwe have, from lemma 7.8,

and from lemma V.4 of [19] and lemma 7.9 we get

L:(h*0r) = h*(dL) — h*(Loe,)OL) — @

=h*dL) — @&

wherea is the 1-form onJz along H defined by

&(Z) = —OL(RE, Z) — h([&, D(2))))
R being the curvature of. Singe@L is semibasic and_f is a connection in the fibration
T(jlp) : J*n — J'y (along H), we deduce tha®; (h([&, ©(Z)])) = 0, and hence we
get

a(Z) = —OL(R(, 2)).
In local coordinates we obtain
_ oL
T o

Qi

(V"R = R0
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Therefore, we deduce thatis precisely the pullback bylp/g of oy r.
Thus, we get

Le(T () O = (T(j*p))*(dL*) —a.

Let £&* be a vector field along the maplp/;, : H — J'y, and suppose that it is the
solution of the equation

ﬁy@L* =dL*—(¥Ly[‘ ly]/f(dl‘) =1
or, equivalently,
l'yQL* =oLr ly)/f(dl) =1.

Then every vector field” along H which projects ontc* (that is, (T (jp), 5)(¥) = &)
verifies that

Ly (TG ) O = (T(j1p)*(dL*) — & ign = 1. (39)

Moreover, the horizontal lift o&* with respect tol" (i.e., the vector fieldX such that
X(x) = E*(@ ) (jlp(x)), for all ¥ € H) verifies (39). Since also satisfies (39) and
& € H, we deduce thatg*)? =& and(T(jlp)/,;)(S) =&*, O

Remark 11.4. Theorem 11.3 shows that in order to obtain the dynamics ofglygin
system(L, I') we first reduce the Lagrangiab to a new Lagrangiarl.* defined on the
reduced phase space. The new system is unconstrained, but subjected to a non-conservative
force o, r. If we solve the dynamics foL*, we then recover the original dynamics by
horizontal lift with respect to the connectidh The procedure is close to that known as
symplectic reduction procedure.

Corollary 11.5.  Let f be a constant of the motion for the non-conservative system
(L*,arr), that is,&*(x)(f) = 0 for all x € H. Then,(jlp/,;,)*f is a constant of the
motion for theCaplygin system(L,T), i.e. £&(f) = 0. Conversely, ifg is a projectable
function ontoJ'y which is a constant of the motion for ti@aplygin system(L, I'), then

its projection is a constant of motion for systéili*, o, ).

The last corollary yields a method to obtain constants of the motion for non-holonomic
mechanical systems (see also [1, 2]).

Example 11.6. Consider the Lagrangian functidnand the distributiorD of example 8.5.
We have the fibration
P E=Rx®R?xS8H) — N=RxRxSH

(t,x,y,9) — (t,x,9).
In the remainder of this example we will restrict ourselves to the opelR sefR? x U),
being U the open set of* consisting of the points such that aps 0.

We define a connectiol in p such that the horizontal distributiol is precisely
the distribution D. Thus, the distributionH is generated by the vector fields/d¢),
(8/9x) +tang(3/dy), and(d/3¢).

The curvaturer of T is given by

R= —se@q&% ® (dx A dg).
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Since (L,T) is a Caplygin system, we obtain a projected Lagrangian function :
R x T(R x U) —> R given by

L*(t,x, ¢, x, §) = 2(seC p)i? + 142

Since(L, I') is regular (see example 8.9); is regular too, and we have

O =iseC¢dr + dp — ((se€ ¢)i? + ($)*)dt

Q- =dp Adgp +sedpdr A di +2seéptangx di A dp + (x)?seé ¢ tang dp A dr
+iseépdi A dr + ¢ dd A dr.

The 1-forma;  on J'y along H is
apr = xtang se€ ¢ (—¢ dx + x dp)

which shows thatr; - is abona fidel-form onJly.
The vector fields* which is a solution of the equations

iyQp = o r iydr=1

is just the projection of onto J1y, namerT(jlp/;,)(s) = &*, whereé¢ is the solution of
the constrained systed, H). Its local expression is

£* a+'8+¢'>8 '<;5tan¢a
= —+x— — =X —.
ar ' Tax | dg 3

Since the functiory = x¢ — (tang)x is a constant of the motion far*, from corollary 11.5
we deduce that the pullbaodg'lp/,;)*f is a constant of the motion for the constrained
system.
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